рефераты рефераты
Главная страница > Учебное пособие: Проектирование электромеханических устройств  
Учебное пособие: Проектирование электромеханических устройств
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Проектирование электромеханических устройств

В третьем приближении, для соответствующих конфигураций проводника уточняется температура в отдельных его частях. Например, вводим элемент токоведущего контура, разбиваем его на характерные участки, 1 и 2 по этому элементу протекает ток I.

Рисунок 1.10 –Элемент токоведущего контура с переменным сечением

После введения всех необходимых параметров

,

где , м , м

, – периметры сечения соответственно 1-го и 2-ого участков

,– площадь поперечного сечения 1-го и 2-ого участков

,– коэффициенты теплоотдачи при 0С0  1 и 2 участков

  – коэффициент теплопроводности металла элемента токоведущего контура

, 0С      , 0С

где ,– удельные электрические сопротивления,

Если температура не отвечает необходимым требованиям, то в конструкцию детали вносятся коррективы и расчёты температуры повторяются.

11.2 Кратковременный режим работы

Кратковременный режим характеризуется тем, что при переменном токе нагрузки рабочий период и  , – время нагрузки, tп – время паузы, Т – постоянная времени нагрева:

В соответствии с ГОСТ 12434–96 рекомендуются следующие значения  для аппаратов до 1000 В: 5, 15, 30 с и 10, 30, 60 мин.

За основу расчёта принимается условие: допустимое превышение температуры при кратковременном режиме в аппаратах общепромышленного применения, должно оставаться таким же, как и при продолжительном режиме работы, т.е.

Рисунок 1.11 – Нагрев проводника до установившейся температуры при кратковременном режиме

При этом нагрузочная способность в кратковременном режиме будет больше, чем в продолжительном режиме, что характеризуется коэффициентом перегрузки по токам

Далее по рассчитанному коэффициенту  и заданному току  можно определить ток продолжительного режима (эквивалентный) при протекании которого устанавливается такая же температура как и при кратковременном режиме по истечении времени . Затем расчёт сечения и размеров сечения можно производить аналогично, как для продолжительного режима работы.

11.3 Повторно-кратковременный режим работы

Рисунок 1.12 – Изменение тока во времени при ПКР

Данный режим характеризуется продолжительностью включения, которая, как правило, исчисляется в % :

 (физический смысл)

Зная частоту включения-отключения в час Z можно определить время цикла

,  с

Зная ПВ можно легко определить время , потом и время паузы . В соответствии с ГОСТ 12434-96 устанавливаются предпочтительные значения ПВ для аппаратов до 1000 В: 15%, 25%, 40%, 60%, 80%.

Как и в кратковременном режиме, для ПКР принимается условие

 

Расчёт токоведущих частей в этом режиме можно производить по аналогии, как и для кратковременного режима, т.е. определяется коэффициент перегрузки по току

По известному коэффициенту  определяется эквивалентный ток продолжительного режима , по которому и рассчитывается сечение проводников .

В некоторых случаях целесообразно пользоваться упрощённой формулой для выражения эквивалентного тока:

, А,

где ПВ в относительных единицах.

11.4 Расчёт токоведущих частей в режиме КЗ или предельных токах

При работе электрического аппарата возможны случаи, когда по его токоведущей цепи проходит ток КЗ или предельный ток. В этом случае аппарат не должен разрушаться в течении некоторого времени. Способность аппарата выдерживать кратковременное тепловое действие токов КЗ или предельных токов называется термической устойчивостью аппарата. Эта способность характеризуется током термической устойчивости при определённом времени устойчивости.

Допустимая температура токоведущих частей аппарата при действии токов КЗ или предельных токов может быть значительно большая, чем при нормальных режимах. Например, для меди и латуни предельная температура может достигать 300оС, для алюминия – 200оС. Это обстоятельство в дальнейшем учитывается в расчётах. Уравнение теплового баланса для этого режима имеет следующий вид:

,

где: – энергия, которая выделяется в токоведущем контуре при протекании тока КЗ или предельного тока;

– энергия, которая расходуется на нагрев проводника.

Примерная энергия, которая отдаётся в окружающую среду , в этом случае незначительна, составляет 3-5 % от общей энергии, ею можно просто пренебречь.

Процесс нагрева адиабатический – отсутствие обмена с окружающей средой.

где: – масса  , кг

– объём токоведущей детали, м3

– плотность, удельный вес

Уравнение теплового баланса

 ,  и – температурные коэффициенты

 (1)

где: и – значения интеграла правой части при соответственно верхнем  и  значениях температур.

В литературе приводятся кривые зависимости температуры от  , рассчитанные по формуле (1).

Рисунок 1.13 – Зависимость


Используя эти кривые можно определить ток термической устойчивости при заданном времени термической устойчивости или наоборот. Решение задачи сводится к следующему: если задано tкз, то находится Ікз. и наоборот.

Для аппаратов низкого напряжения, как правило, определяется время термической  стойкости на основании известного  тока и сечения токоведущей детали Iкз и Sm. На основании известных данных Акз и Ан определяем время термической стойкости. Для аппаратов высокого напряжения, как правило, регламентируется время термической стойкости, которое в соответствии с формулой (1) позволяет определить предельный ток Кз. Из выражения (1) видно, что  для одного и того же материала при одинаковых нагрузочных условиях величина постоянная, т.е. .

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21

рефераты
Новости