рефераты рефераты
Главная страница > Учебное пособие: Проектирование электромеханических устройств  
Учебное пособие: Проектирование электромеханических устройств
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Проектирование электромеханических устройств

2 При необходимости получения относительно больших перемещений (прогиба) при небольших силах применяют материалы с меньшими значениями модуля упругости, например, фтористую бронзу.

В зависимости от названия аппарата следует принимать повышенные или пониженные допустимые напряжения в металле. Например, для аппаратов распределительных устройств, работающих редко при износостойкости до нескольких десятков тысяч циклов, можно предусматривать наименьший коэффициент запаса. Для аппаратов управления и автоматики принимаются значения допустимых напряжений, а для особо тяжёлых режимов – пониженное  допустимое значение напряжения в металле. Помимо указанного, необходимо также руководствоваться требованиями ГОСТов.

Наибольшее  распространение получили витые цилиндрические пружины. Они могут в зависимости от размеров развивать усилия от долей до тысяч Ньютонов.

Рассмотрим принципы конструирования и проектного расчёта витых цилиндрических пружин на примере рычажных контактов.


15.1 Порядок проектирования

15.1.1 Эскизная проработка контактного узла в масштабе

Эскизная проработка выполняется после окончательного выбора размеров контактов, расчёта объёмного износа контактов, когда можно определить провал контактов, по известным силам конечного и начального нажатия. На этом этапе фактически формируется конструкция контактного узла, в частности производится выбор конструкции контакта держателя.

Рисунок 1.25 – Контакты:  – вектор силы контактного нажатия, – вектор силы контактной пружины, – длина плеча, на которое будет действовать вектор силы Fпр,  – длина плеча, на которое будет действовать вектор силы .

Величины ,  устанавливаются в результате проработки контактного узла в масштабе.

Исходными данными для расчёта параметров пружины служат, (для мостиковых контактов в подобных ситуациях эти силы удваиваются), , длины плеч , .


15.1.2 Построения нагрузочной характеристики пружины

Для этого выполняется привидение сил контактного нажатия и провала контакта  в точке О2, где действует проектируемая пружина. Про пересчёт действующих сил вводится кинематическая схема.

Рисунок 1.26 – Кинематическая схема сил

, Н

, Н

Для пересчёта перемещений вводится следующая кинематическая схема:

Рисунок 1.27 – Кинематическая схема перемещений


,      ,   ,   

так как угол   один и тот же, то 

Для построения нагрузочной характеристики вводим систему координат

Рисунок 1.28 – Зависимость противодействующих сил от перемещения

Полученная нагрузочная характеристика является исходной для определения параметров пружины


Рисунок 1.29 – Пружина: d – диаметр проволоки, Dср – средний диаметр пружины, W – число витков пружины, определяющее длину пружины в сжатом и свободном состоянии.

15.1.3 Выбор материала пружины

Производится выбор материала пружины с учётом рекомендаций и определяется G – модуль сдвига, модуль упругости при кручении (Н/мм2, кгс/мм2)

Определяется  – допустимое напряжение при кручении, (Н/мм2, кгс/мм2)

15.1.4 Определение характеристических коэффициентов пружины

,  и 

где – длина пружины в свободном состоянии

В обычном исполнении пружин значение коэффициентов С1 и С2 следующее:

,

Важно выдержать втрое условие для значения С2 в пружинах, работающих на сжатие: когда , при работе пружины может получиться боковое выпучивание, при этом создаётся трение в витках, искажающее характеристику пружины. Последнее не касается пружин, работающих в специально предусмотренных для них каналов, отверстий.

При проектировании пружин рекомендуется выбирать следующие предпочтительные размеры  и :

 – 5; 6; 8; 10; 12,5; 16; 20; 25; 32; 40; 50; 62 мм

 – 0,3; 0,4; 0,5; 0,6; 0,8; 1; 1,2; 1,6; 2; 2,5; 3; 4,5; 6 мм

15.1.5 Определение диаметра проволоки или прутка и числа витков катушки

Полученное значение корректируется с учётом действующего сортамента  на проволоку или пруток.

 Определяется рабочее число витков пружины:

где – скорректированный диаметр проволоки или прутка

 – полное перемещение пружины, 

Определяется полное число витков пружины:

15.1.6 Определение шага пружины сжатия и длины пружины

Шаг пружины:

Длина пружины в рабочем состоянии:

После определения  производится проверка коэффициента C2, если имеются существенные расхождения, то необходимо вносить корректировку и расчёты повторять:

После этого определяется длина пружины в сжатом состоянии:

15.1.7 Уточнение полученных данных

Так как в процессе расчёта некоторые величины округлялись, то выполняется построение расчётной характеристики пружины и сопоставление её с требуемой характеристикой по условиям работы:

а) уточняется начальная сила пружины:

б) уточняется сила пружины конечная:

Расхождение расчётных сил  и  с исходными не должно быть более   ± 5 ÷ ±10 %.


16 ПРОЕКТИРОВАНИЕ ДУГОГАСИТЕЛЬНЫХ УСТРОЙСТВ

16.1 Общие положения

При проектировании ДУ необходимо учитывать ряд требований:

1 ДУ должно обеспечивать заданную коммутационную отключающую и включающую способность аппарата при заданных условиях работы.

2 ДУ должна обеспечивать минимальное время горения дуги с целью уменьшения износа контактов и дугогасительной камеры, если она предусмотрена.

3 При гашении дуги в ДУ не должно возникать недопустимых перенапряжений, вызывающих перекрытие изоляции.

4 ДУ должно иметь минимальные размеры, минимальный выброс пламени дуги и ионизированных газов, которые могут вызвать пробой изоляции между частями аппарата.

5 ДУ должно обеспечивать минимальный звуковой и световой эффекты.

Некоторые требования взаимно противоречивы: например, уменьшение времени горения дуги связано с увеличением перенапряжений.

16.2 Условие гашения дуги постоянного тока


Рисунок 1.30 – ВАХ дуги постоянного тока

ВАХ дуги должна лежать выше нагрузочной

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21

рефераты
Новости