рефераты рефераты
Главная страница > Учебное пособие: Физика: механика и термодинамика  
Учебное пособие: Физика: механика и термодинамика
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Физика: механика и термодинамика

Выделим в движущемся потоке газа вдоль вектора скорости два параллельных соприка­сающихся слоя. Пусть скорости их движения по величине и направлению тако­вы, как показано на рисунке 2. Имеющиеся в тепловой скорости, а, следовательно, и в импульсе молекул составляющие рx в рассмат­риваемых слоях неодинаковы. Молекулы, находящиеся в более медленном, «нижнем», слое имеют меньшую составляющую импульса рx и, по­пав в «верхний» слой, затормаживают его. «Верхние» же молекулы, наоборот, перено­сят импульс больший, чем имеют молекулы «нижнего» слоя, и поэтому ускоряют этот слой.

   Вязкость различных газов неодинакова и тем больше, чем больше молекулярная масса газа. Она увеличивается также с повышением давления, т.е. концентрации молекул, и температуры.  Чем выше температура газа, тем интенсивней происходит обмен молекулами ме­жду его слоями, тем лучше работает механизм внутреннего трения. 

   1.3. Движение твердого тела в жидкости

При движении тел в вязкой жидкости возникают силы сопротивления. Происхождение этих сил можно объяснить  двумя разными механизмами.  При небольших скоростях, когда за телом нет вихрей (ламинарное течение или обтекание), сила сопротивления обуславливается только вязкостью жидкости. Слои жидкости, прилегающие к телу, неподвижны  относительно тела.  Граничащие с ними слои увлекаются ими по описанному выше механизму вязкого трения в жидкостях. Так создаются силы, тормозящие относительное движение твердого тела  и жидкости. Величину этих силы трения можно рассчитать с использованием  формулы Ньютона (1).

  Второй механизм сил сопротивления связан с образованием вихрей (рис.3). Давление в жидкости меняется в зависимости от скорости потока так, что в области вихрей оно существенно уменьшается (уравнение Бернулли: p1+rv12/2=p2+rv22/2 ). Разность давлений Dp=r(v12 v22)/2  в областях перед телом и за ним создает силу «лобового» сопротивления и тормозит движение тела. Часть работы, совершаемой силами трения при движении тела в жидкости, идет на образование вихрей, энергия которых пере­ходит затем в теплоту.

   Если движение тела в жидкости происходит медленно, без образования вихрей,  то сила сопротив­ления создается только по первому из описанных механизмов. Для тел сферической формы ее величину определяют по формуле  Стокса:

                                             Fc=6phrv                                                                   (2)

где г - радиус шарика; v - скорость его равномерного движения; h - вязкость жидкости.

2. Экспериментальная часть

Часть I.    Определение вязкости жидкости по методу Стокса

Теория метода

   На движущийся шарик в жидкости действуют три силы: сила тяжести  - Р, выталки­вающая сила FA  и сила сопротивления Fc. Силу тяжести и выталкивающую силу можно определить через объем шарика, плотность r  шарика и плотность r0  жидкости:

P=4pr3rg/3                                                               (3)

FA =4pr3ro g/3                                                            (4)

   Сила тяжести и выталкивающая сила постоянны. При малой скорости падения шари­ка сила сопротивления прямо пропорциональна этой скорости и поэтому на начальном этапе он движется равноускоренно. Затем наступает момент,  когда все три силы уравновешиваются, и шарик начинает двигаться равномерно:

P=FA + Fc   или   4pr3rg/3= 4pr3ro g/3+6phrv,       (5)

 откуда

                                  (6)

Экспериментальная установка

   Для определения вязкости жидкости по методу Стокса берется высокий цилиндрический сосуд с исследуемой жидкостью (рис.4).  На сосуде имеются две кольцевые метки А и В. Метка А соответствует той высоте, где силы, действующие на шарик, уравновешивают друг друга и движение становится равномерным. Нижняя метка В нанесена для удобства отсчета времени в момент падения шарика.

   Бросая шарик в сосуд, отмечают по секундомеру время t прохождения шариком расстояния l = АВ между двумя метками.

   Если в формулу (6) подставить выражение для скорости движения v=l/t и вместо радиуса r ввести диаметр шарика d, то окончательная расчетная формула приобретает вид:

                                                            ( 7)

Ход выполнения работы

1. Измерьте расстояние между метками А и В.

2. При необходимости измерьте с помощью ареометра плотность жидкости r0.

3. Измерьте  микрометром или штангенциркулем диаметр d шарика.

4. Бросив шарик в сосуд с жидкостью, измерьте время t прохождения шариком рас­стояния между метками А и В.

5. По формуле (7) вычислите вязкость  жидкости h.

6. Аналогичные измерения проделайте с пятью шариками. Результаты измерений и вычислений заносите в таблицу 1 отчета.

7. По результатам всех опытов найдите среднее значение вязкости h.

8. Для оценки  систематической погрешности измерения вязкости используйте расчетную формулу (7). Выведите формулу для вычисления относительной погреш­ности измерения. При этом условно считается, что табличные величины, входящие в формулу, не имеют погрешностей, а погрешности измеренных величин /, d, r  опре­деляются точностью приборов, использованных  для их измерения.

9. Полученное значение вязкости сравните с табличной величиной для дан­ной жидкости. При объяснении причин расхождения укажите  какой из используемых измерительных приборов вносит в окончательный результат наибольшую погрешность.

Часть II. Определение вязкости воздуха по методу Пуазейля

Теория метода

   При ламинарном движении жидкостей и газов по гладким цилиндрическим трубам  расход  (объем жидкости или газа, протекающих через поперечное сечение трубы за одну секунду), зависит от ее вязкости, диаметра трубы, ее длины и  разности давления на ее концах. Соответствующее соотношение  было выведено Пуазейлем и носит его имя.                                                   

V=Dp pr2Dt/hl ,

куда входят перепад давления, радиус трубы, длительность течения, коэффициент вязкости, длина трубы. 

   На основании этого соотношения разработан и широко применяется метод измерения вязкости жидкостей и газов - метод Пуазейля. 

   Для газов он  состоит в измерении скорости ламинарного протекания  газов в тонком капилляре с известными размерами  и при контролируемой разности давлений. В данной работе по методу Пуазейля определяется вязкость воздуха.  На величину вязкости газов большое влияние оказывают посторонние примеси. Для атмосферного воздуха, например, следует учитывать содержание водяных паров.  В установках для  точных измерений воздух  перед поступлением в капилляр осушают  различными, чаще всего химическими осушителями.   Важно также помнить, что вязкость газов в большой степени зависит от их температуры, что также предусмотрено в лабораторных приборах. 

Экспериментальная установка

   Экспериментальная установка для определения воздуха (рис. 4) состоит из сосуда 1 со сливным шлангом 2, капилляра 3, мерительного стакана 4 и жидкостного манометра 5. Перед опытом сосуд заполняется водой. При опущенном шланге 2 уровень воды в со­суде уменьшается и возникает перепад давлений воздуха на концах А и В капилляра 3, который измеряется манометром 5. Освободившийся объем занимает воздух, прони­кающий в сосуд через капилляр. При этом объем вытекшей воды равен объему воздуха, прошедшему через капилляр.

Расчетная формула для определения коэффици­ента вязкости по методу Пуазейля имеет вид:

                                                          (8)                                                

где d- диаметр капилляра, / - его длина, V- объем прошедшего через капилляр воздуха (объем вы­текшей из сосуда жидкости), Dр - перепад давле­ний на концах капилляра (показание манометра), t - время протекания воздуха через капилляр.

Ход выполнения работы

1. Закрепите сливной шланг в вертикальном по­ложении. Заполните сосуд 7 водой до начала его конической части. Плотно закрепите пробку с капилляром в горловине сосуда.

2. Опустите сливной шланг вниз, подставив под него мерный сосуд. Измерьте секундомером время t, в течение которого из сосуда вытечет объем V=200 см3 воды.

3. Измерьте в это же времени перепад давлений Dр по манометру.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

рефераты
Новости