рефераты рефераты
Главная страница > Реферат: Рентгенівське випромінювання  
Реферат: Рентгенівське випромінювання
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Рентгенівське випромінювання

Рентген досліджував так зване гальмівне рентгенівське випромінювання. Воно виникає в катодній трубці при зіткненні електронів з анодом і має безперервний спектр (широкий діапазон довжин хвиль). Але Баркла виявив, що якщо впливати на атоми елементу рентгенівськими променями, то атоми самі починають випускати такі ж промені певних довжин хвиль. Кожному елементу властивий свій, індивідуальний спектр характеристичного рентгенівського випромінювання, подібний до оптичних лінійчатих спектрів, але розташований в іншому діапазоні довжин хвиль.

Цим спектрам також дала пояснення квантова теорія. Якщо рентгенівський фотон вибиває за межі атома електрон з якого-небудь з нижніх електронних шарів, то один з електронів, що знаходиться у вищих шарах (що має велику енергію), перескакує на місце, що звільнилося, і відповідно до постулатів Бору випускає новий фотон з довжиною хвилі рентгенівського діапазону, - це і є характеристичне рентгенівське випромінювання. Від того, який саме з електронів впаде на місце вибитого, залежить довжина хвилі фотона; тому видалення одного і того ж електрона наводить до появи цілої спектральної серії характеристичного випромінювання.

Окрім гальмівного і характеристичного існує ще один різновид рентгенівського випромінювання. Якщо пучок дуже швидких електронів потрапляє в сильне магнітне поле, траєкторії часток круто завертаються. В той же час, як і при будь-якому русі зарядів, з'являється синхротронне електромагнітне випромінювання (вперше його спостерігали в синхротроні - одному з типів прискорювачів заряджених часток). Довжини хвиль синхротронного випромінювання можуть бути різними залежно від напруженості магнітного поля. Нерідко вони знаходяться в межах рентгенівського діапазону, але ближче до ультрафіолетового. Таке випромінювання називається м'яким рентгенівським.


3.  Поглинання та розсіяння рентгенівського випромінювання

Рентгенівське випромінювання має велику проникну здатність. При взаємодії рентгенівських фотонів з електронами атомів речовини енергія випромінювання витрачається на такі процеси утворення: когерентного випромінювання, при якому довжина хвилі та енергія розсіяного фотона не змінюються, а змінюється тільки напрям імпульсу; некогерентного випромінювання, при якому змінюються напрям і величина імпульсу фотона та його енергія (комптонівське розсіяння); фотоелектронів, які мають певні значення кінетичної енергії, та іонізованих атомів (внутрішній фотоефект); двічі іонізованих атомів та на ін. Внаслідок цього інтенсивність рентгенівського випромінювання при проходженні крізь речовини зменшується, тобто воно поглинається. Поглинання рентгенівського випромінювання в загальному випадку зумовлене справжнім поглинанням та розсіянням і відбувається за експоненціальним законом

kd                                                                                                                                                    (1.2)

де - початкова інтенсивність рентгенівського випромінювання;  - інтенсивність випромінювання, що проходить шар речовини завтовшки d; k - коефіцієнт поглинання. Оскільки поглинання випромінювання зумовлене справжнім поглинанням і розсіянням, то коефіцієнт поглинання можна записати як суму двох коефіцієнтів

п + р                                                                                                                                                (1.3)

де п і р - відповідно коефіцієнти справжнього поглинання і розсіяння. Дослідним шляхом встановлено, що коефіцієнт справжнього поглинання залежить від густини речовини, атомного номера 7. в періодичній системі елементів Менделєєва, атомної маси та довжини хвилі, тобто

п~ρ 𝝀3                                                                                          (1.4)

Це означає, що атоми хімічних елементів, які знаходяться в кінці періодичної системи елементів і утворюють речовини великої густини, повинні інтенсивно поглинати рентгенівське випромінювання. Прикладом такої речовини є свинець. Коефіцієнти п і р , а отже, і  пропорційні масі речовини. У зв'язку з цим зручніше користуватися масовими коефіцієнтами, тобто відношеннями п/ ρ, р/ ρ, / ρ, де ρ - густина речовини. Тоді вираз (1.2) запишеться так:

                                                                                      (1.5)

Для теоретичних розрахунків зручніше користуватись атомними коефіцієнтами, які одержують як добуток масових коефіцієнтів на абсолютну масу атома, тобто на відношення кілограм-атома даного елемента А до числа Авогадро

  ;.; ;                                                  (1.6)

Характерною особливістю поглинання рентгенівського випромінювання є те, що воно є суто атомним, і молекулярний коефіцієнт поглинання дорівнює сумі атомних коефіцієнтів елементів, що входять до складу молекул.

Розсіяння рентгенівського випромінювання виявляє закономірності, які значно відрізняються від розсіяння світлових хвиль видимої частини спектра. Якщо у видимій частині спектра розсіяння обернено пропорційне четвертому степеню довжини хвилі, то розсіяння рентгенівського випромінювання не залежить від довжини хвилі.


4.  Застосування рентгенівського випромінювання

Зразу ж після відкриття рентгенівського випромінювання його було застосовано в медицині. Цьому сприяла його велика проникна здатність та особливості поглинання. Кістки і тканини по-різному поглинають рентгенівське випромінювання, оскільки в перші входить кальцій, а в другі -вода, і відношення їх коефіцієнтів поглинання дорівнює приблизно 68. Тому на рентгенівських знімках тінь від кісток різко виділяється.

Пізніше була розроблена рентгенівська дефектоскопія - виявлення наявності, місця і розмірів внутрішніх дефектів у виробах шляхом їх рентгенівського просвічування.

Після того, як досконало була вивчена природа рентгенівського випромінювання, одержана дифракція, його почали застосовувати для дослідження будови кристалів. Так було створено рентгенівський структурний аналіз, за допомогою якого визначено атомні структури мінералів, неорганічних сполук, сплавів, структури складних органічних сполук, проводиться наукове прогнозування добування нових матеріалів із наперед заданими властивостями та ін.

Рентгеноспектральний аналіз дає змогу з великою точністю визначити довжини хвиль та інтенсивності тонкої структури рентгенівських спектрів випромінювання і поглинання. На основі таких відомостей можна визначити енергію зв'язку електронів у різних стаціонарних станах, стежити за змінами величин енергії зв'язку при зміні взаємодії і характеру взаємодії в конденсованих системах, тобто одержати відомості про енергетичний спектр електронів.

Велике практичне значення має рентгеноспектральний хімічний аналіз елементарного складу речовини. Один з його нових методів (так званий локальний рентгеноспектральний хімічний аналіз) дає змогу визначити елементарний хімічний склад усіх елементів таблиці Менделєєва в мікроскопічних об'ємах близько кубічного мікрометра. У наш час це єдиний метод визначення складу окремих вузлів схем мікроелектроніки, перехідних шарів у приладах квантової електроніки.

На практиці використовують кілька методів рентгеноспектрального і рентгеноструктурного аналізу, а саме: метод Лауе — нерухомий монокристал опромінюється вузьким пучком рентгенівського випромінювання, спектр якого неперервний (суцільний); метод обертового кристала - монокристал, що обертається, опромінюють монохроматичними променями; метод порошків (метод Дебая — Шеррера - Хелла) — полікристалічне тіло опромінюють монохроматичним рентгенівським випромінюванням.

Великого значення набули дослідження рентгенівського випромінювання космічних тіл, які проводяться з штучних супутників. На основі цих досліджень стає можливим визначення складу небесних тіл за їх рентгенівським випромінюванням. Ці дослідження привели до створення рентгенівської астрономії*.

Широкого практичного застосування набула також рентгенівська мікроскопія. Хоч роздільна здатність рентгенівських мікроскопів на 2—3 порядки нижча від роздільної здатності електронних, проте велика проникна здатність рентгенівського випромінювання дає змогу розв'язувати ряд практичних задач металознавства, біології та інших галузей знань.


Висновок

Дослідження в області рентгенівської спектроскопії, що отримали великий розвиток відразу ж після відкриття явища дифракції рентгенівських променів в кристалах, як відомо, зіграли видатну роль в створенні сучасної теорії атома. Вже в перші роки фізики, що працювали в цій області, накопили великий експериментальний матеріал, що стосується величин довжин хвиль і відносної інтенсивності ліній рентгенівських спектрів більшості хімічних елементів, і встановили вкрай цікаві і важливі закономірності. Їх пояснення, так само як і можливість створення на базі нових теоретичних вистав раціональної систематики ліній рентгенівського спектру, було одним з найбільш крупних успіхів теорії атома. Лише після цього і особливо після успішного впровадження в 30-х роках нашого століттІ в практику світлосильних рентгенівських спектрографів із зігнутим кристалом стало можливим використання рентгенівської спектроскопії в хімії. За допомогою цього нового аналітичного методу були вперше виявлені і охарактеризовані деякі, доти невідомі хімічні елементи - реній і гафній, існування яких в природі було передбачене Д. І. Менделєєвим.

Страницы: 1, 2, 3

рефераты
Новости