рефераты рефераты
Главная страница > Реферат: Рентгенівське випромінювання  
Реферат: Рентгенівське випромінювання
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Рентгенівське випромінювання

Реферат: Рентгенівське випромінювання

Зміст

Вступ

1.  Рентгенівське випромінювання

1.1  Природа та одержання рентгенівського випромінювання

1.2   Гальмівне та характеристичне рентгенівське випромінювання та його спектри

2.  Рентгенівські спектри атомів

3.  Поглинання і розсіяння рентгенівського випромінювання

4.  Застосування рентгенівського випромінювання

Висновок

Література


Вступ

У міру поглиблення і розширення знань про структуру хімічних сполук, металів і сплавів інтерес хіміків і металознавців до проблеми хімічного зв'язку усе більш підвищується. Це знаходить|находить| своє вираження в інтенсивній розробці багатьох питань теорії і в ще більшій мірі - в розвитку багаточисельних|численних| нових експериментальних методів дослідження. Важливого|поважного| значення набувають фізичні методи дослідження, що дозволяють більш менш безпосередньо встановлювати зв'язок хімічних і фізичних властивостей речовини з його будовою і з особливостями розподілу по енергіях електронів в металі або в з'єднанні|сполуці|. До таких методів належать, в першу чергу, вивчення магнітних характеристик речовини, рентгенівські і деякі оптичні методи.

Зараз немає необхідності пропагувати вживання рентгенографічних і электроннографічних методів дослідження в хімії. Їх роль в хімії взагалі, і головним чином в стереохімії і металознавстві, загальновідома і загальнопризнана. Навпаки, доречніше вказати на властивих цим методам недоліки. Рентгенографічний і электроннографічний методи, як правило, не є «прямими» методами вивчення просторового розташування атомів в молекулах і кристалах, що дозволяють «бачити» основні структурні складові з'єднання. Найбільш достовірним зазвичай є той варіант структури, в якому що найкраще узгоджуються обчислена і спостережена картини інтерференції рентгенівських або електронних хвиль в речовині. При цьому фіксованими виявляють лише центри тяжіння атомів, створюючи структуру. Думка ж про типа сі;: хімічному зв'язку, що обумовлюють стійкість з'єднання, робиться з різною мірою достовірності, на підставі непрямих міркувань і напівемпіричних узагальнень. Фур’є-аналіз, за допомогою якого можна вивчати розподіл електронної щільності в з'єднання і таким чином кількісно оцінювати характер хімічного зв'язку між складовими їх атомами, широкого вживання ще не отримав: він використовується лише для кристалів із заздалегідь добре вивченою кристалічною структурою. Таким чином, здається виправданим залучення до сфери физико-хімічних досліджень нових фізичних методів вивчення мікроскопічної структури твердих і рідких тіл; ці методи чутливіші до зміни електронної будови атомів, чим сучасний структурний аналіз.


1.  Рентгенівське випромінювання

Рентгенівське випромінювання було відкрите у 1895 р. видатним німецьким вченим В. Рентгеном (1845-1923), яке він назвав λ-променями. Пізніше воно було названо на його честь. Якщо основні властивості рентгенівського випромінювання були вивчені в досить короткий час після їх відкриття, то їх природа довгий час залишалась нез'ясованою.

1.1   Природа та одержання рентгенівського випромінювання

В 1912 р. М. Лауе одержав дифракцію рентгенівського випромінювання на монокристалах, що довело їх хвильову природу. Оскільки воно сильно іонізує повітря, не зазнає відхилення в електричному і магнітному полях, викликає почорніння фотоемульсій, то було зроблено висновок про його електромагнітну природу.

У 1907 р. В. Він (1864-1928), вимірюючи енергію фотоелектронів, які звільнялися під дією рентгенівського випромінювання, визначив довжину його хвилі. Було встановлено, що довжина хвилі '= 7*10 -5 мкм. Таким чином було доведено, що рентгенівське випромінювання має ту саму природу, що й світло, і відрізняється від нього лише досить малими довжинами хвиль. Рентгенівські хвилі охоплюють широкий інтервал довжин: від 0,01 до 10-8 мкм.

Описание: C:\Documents and Settings\Администратор\Рабочий стол\DSC03416.JPG

Джерелами рентгенівського випромінювання є рентгенівські трубки, які в простіших випадках являють собою двоелектродні вакуумні прилади різних конструкцій і розмірів. На рис. 1.1 наведена схема рентгенівської трубки. У скляну трубку введено електроди: К (катод) і А (анод). Катод розжарення є джерелом електронів. Між катодом і анодом підтримується різниця потенціалів U в десятки і сотні кіловольтів. Електрони, які набули високих енергій у прискорювальному електричному полі, бомбардують анод А, площина якого утворює з напрямом руху електронів кут 45°. Внаслідок цього рентгенівське випромінювання, що виникає при гальмуванні електронів анодом, виходить із трубки через отвір захисного свинцевого екрану. Оскільки напруга на трубці досить висока, то вона завжди працює в режимі струму насичення. Щоб змінити інтенсивність рентгенівського випромінювання, змінюють струм розжарення катода. Коефіцієнт корисної дії рентгенівських трубок близько 1 % , тобто 99 % кінетичної енергії електронів перетворюється в тепло. За принципом одержання електронних пучків рентгенівські трубки поділяють на три типи: іонні, електронні та індукційні. Джерелами рентгенівського випромінювання можуть бути природні та штучні радіоактивні елементи, а також ряд небесних тіл. Так, сонячна корона дає потужне рентгенівське випромінювання в інтервалі хвиль 10 3-10-2 мкм, а Місяць під впливом потоку протонів(особливо в роки активного Сонця) дає інтенсивне рентгенівське випромінювання.


1.2   Гальмівне та характеристичне рентгенівське випромінювання та його спектри

Дослідження показали, що за порівняно низьких напруг рентгенівське випромінювання утворює суцільний спектр. Електрони, що вилітають з катода, під дією зовнішнього електричного поля набувають високих енергій і при досягненні анода гальмуються, внаслідок чого виникає рентгенівське випромінювання. Суцільний спектр рентгенівського випромінювання пояснюється гальмуванням електронів у момент досягнення ними анода. Таке випромінювання називають гальмівним. На рис. 1.2 показано експериментальні криві розподілу інтенсивності рентгенівського випромінювання за довжинами хвиль. Криві одержали за допомогою трубок, які працюють при однакових напругах з різними матеріалами анода (вольфрам, молібден, хром). Характерною особливістю суцільних рентгенівських спектрів є наявність чіткої короткохвильової межі λтіп та її незалежність від речовини анода. Із підвищенням напруги інтенсивність випромінювання збільшується, а короткохвильова межа зміщується в бік коротких хвиль. Між прискорювальною напругою U і частотою γmах існує лінійна залежність (рис. 1.3).

Виникнення суцільного рентгенівського спектра в класичній електродинаміці пояснюється гальмуванням електронів у полі кристалічної ґратки анода. Існування короткохвильової межі λтіn класична теорія пояснити не може.

На основі фотонної теорії кожний електрон при гальмуванні породжує один фотон. У разі повного переходу енергії електрона в енергію випромінювання виникає фотон із максимальним значенням енергії, тобто

 mах  min                                                                         (1.1)

Описание: C:\Documents and Settings\Администратор\Рабочий стол\DSC03433.JPG

Рис. 1.3

При зіткненнях електронів з анодом частина енергії витрачається переважно на нагрівання анода. У цьому разі народжуються фотони з частотами γ<γmах. Оскільки зіткнення електронів з атомами анода мають випадковий характер, то розподіл енергії електронів на теплоту та випромінювання буде довільним і гальмівне випромінювання має суцільний спектр. Крім цього, фотонна теорія пояснює незалежність короткохвильової межі λтіn (γmах) від речовини анода, а з виразу (1.1) безпосередньо випливає лінійна залежність γ'mах від U (рис. 1.3). Короткохвильова межа суцільного спектра чітко виражена, і відповідна їй довжина хвилі λтіn може бути знайдена з великою точністю, тому експериментальне визначення сталої Планка h з рентгенівського спектра є одним із найточніших методів.

У випадку підвищення напруги на рентгенівській трубці до величини, більшої за деяке критичне значення, що залежить від речовини анода, на фоні суцільного спектра виникають лінійчасті, інтенсивність яких у тисячі разів перевищує інтенсивність суцільного спектра. Оскільки лінійчастий рентгенівський спектр визначається природою речовини, з якої виготовлено анод, то його називають характеристичним. З рис. 1.2 видно, що для напруги, при якій рентгенівська трубка з анодом із вольфраму і хрому випромінює суцільний спектр, трубка з молібденовим анодом, крім суцільного, випромінює ще лінійчастий спектр. Виникнення характеристичного рентгенівського випромінювання фотонна теорія пояснює вибиванням електронів із внутрішніх електронних шарів атомів анода швидкими електронами або фотонами високих енергій. Перехід електронів з вищих шарів на шар, з якого вибито електрон, супроводжується випромінюванням рентгенівського кванта. Існування характеристичного випромінювання підтверджує наявність дискретних рівнів енергії атомів.


2.   Рентгенівські спектри атомів

Описание: C:\Documents and Settings\Администратор\Рабочий стол\rentgen.jpg

Після виявлення рентгенівських променів , було викликало інтерес у багатьох дослідників. Важливий крок вперед зробив англієць Чарлз Баркла, що довів експериментально, що рентгенівське випромінювання це електромагнітні хвилі, довжина яких менша, ніж у видимого світла і ультрафіолетових променів.

Страницы: 1, 2, 3

рефераты
Новости