рефераты рефераты
Главная страница > Контрольная работа: Параметры цепи, определение напряжения  
Контрольная работа: Параметры цепи, определение напряжения
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Контрольная работа: Параметры цепи, определение напряжения

i1+ i2+ i3 = 0;

Исходя из второго закона Кирхгофа для контура bdab:

e1 = i1*R1+ 1/C3* i3dt +i3 *R3;

Исходя из второго закона Кирхгофа для контура bcab:

e2 = 1/C2*i2dt + L2*di2/dt + 1/C3* i3dt +i3 *R3;

Получили систему из 3 уравнений:

i1+ i2+ i3 = 0;

e1 = i1*R1+ 1/C3* i3dt +i3 *R3;

e2 = 1/C2* i2dt + L2*di2/dt + 1/C3* i3dt +i3 *R3;

б) символической.

Исходя из первого закона Кирхгофа для узла а:

I1+ I2+ I3 = 0;

Исходя из второго закона Кирхгофа для контура bdab:

20.5 * E1 + 20.5 *j* E1 = I1*R1 - I3*j*1/wC3+ I3 *R3;

Исходя из второго закона Кирхгофа для контура bcab:

E2 = - I2*j*1/wC2+ I2*j*wL2 - I3*j*1/wC3 + I3 *R3;

Получили систему из 3 уравнений:

 I1+ I2+ I3 = 0;

20.5 * E1 + 20.5 *j* E1 = I1*R1 - I3*j*1/wC3+ I3 *R3;

E2 = - I2*j*1/wC2+ I2*j*wL2 - I3*j*1/wC3 + I3 *R3;

Определить комплексы действующих значений токов во всех ветвях, воспользовавшись методом двух узлов.

E1 =240*e j45 = 170+170j (B);

E2 =240*e j0 =240 (B);

R1 =12*e j0 =12 (Ом);

R3 =4*e j0 = 4 (Ом);

XL2 =wL2*e j90= 3.14*2*500*8=25.12*e j90 (Ом);

Xc2 = - 1/w C2*e j90= - 1/ (3.14*2*500*100) = - 3.18*e j90 (Ом);

Xc3 = - 1/w C2*e j90= - 1/ (3.14*2*500*50) = - 6.37*e j90 (Ом);

Запишем сопротивления ветвей в комплексной форме:

Z1 = R1 =12*e j0;

Z2 = XL2 +XC2 =21.94*e j90;

Z3 = XL3 +R3 =5.92*e -j47.53;

Найдем проводимости ветвей:

y1=1/Z1=1/12*e j0 =1/12;

y2=1/Z2=1/21.94*e - j90 =-j*1/21.94;

y3=1/Z3=1/5.92*e j47.53 =0.11405+0.12460j;

Найдем напряжение между узлами а и b:

Uab= (240*e j45 *1/12*e j0 - 240*e j0 *1/21.94*e j90) / (1/12-j*1/21.94 + +0.11405+0.12460*j) = (20*e j45 -10.97*e j90) / (0.19738+0.07902*j) = (14.14213-3.17213*j) / (0.21261 *e j21.8) =68.17*e -j9;

Uab =67.33+ j* 0.93;

Найдем токи цепи:

I1= (E1 - Uab) *y1= (170+j*170 - (67.33+j*0.93)) /12=16.48*e j59;

I2= (E2 - Uab) *y2= (240- (67.33+j*0.93)) /21.94*e j90 =7.87*e - j91;

I3= Uab*y1=68.17*e -j9 / (5.92*e -j47.53) =11.51*e j36.53

По результатам, полученным в пункте 2, определим показания ваттметра двумя способами:

а) с помощью выражений для комплексов тока и напряжения;

б) по формуле UIcos (UI):

P= UIcos (UI) =197.76*16.48cos (59 - 45) = 3162.3 (Вт);

Построим топографическую диаграмму, совмещенную с векторной диаграммой токов.

Построим круговую диаграмму для тока во второй ветви при изменении модуля сопротивления этой ветви от 0 до . Для этого найдем максимальный ток Ik при сопротивлении третей ветви, равном 0:

Ik = E1*y1 + E2*y2 = (170+170j) /12 - 240*j*1/21.94 = 14.17+ 3.22j = =14.53*e12.8;

Найдем сопротивление цепи относительно зажимов a и b:

Zab=1/ (y1+y2) +Z3=-1/ (j*1/21.94+1/12) + 0.11405+0.12460j = 0.05+0.08j+ +0.11405+0.12460j=0.164+0.205j=0.26*e51;

В окружности

хорда равна Ik = 14.53*e12.8;

коэффициент равен k=0.36;

вписанный угол = - 7

Пользуясь круговой диаграммой построим график изменения этого тока в зависимости от модуля сопротивления.

Используя данные расчета, полученные в пункте 2, запишем выражения для мгновенных значений тока и напряжения. Построим график зависимости одной из этих величин.

Uab=68.17* sin (wt-9);

I2=11.51* sin (wt + 36.53)

График - синусоиды, смещенные относительно оу на 90 и - 36,530 соответственно.

Полагая, что между двумя индуктивностями, расположенными в разных ветвях заданной системы, имеется магнитная связь при коэффициенте магнитной индукции М (добавим вторую индуктивность в 3 ветвь) составим в общем виде систему уравнений для расчета токов во всех ветвях цепи, записав ее в двух формах:

а) дифференциальной;

б) символической

1) На основании законов Кирхгофа составим в общем виде систему уравнений для расчета токов во всех ветвях цепи, записав ее в двух формах:

а) дифференциальной. Исходя из первого закона Кирхгофа для узла а:

i1+ i2+ i3 = 0;

Исходя из второго закона Кирхгофа для контура bdab:

e1 = i1*R1+ 1/C3* i3dt + L3*di3/dt - M23*di2/dt + i3 *R3;

Исходя из второго закона Кирхгофа для контура bcab:

e2 = 1/C2*i2dt + L2*di2/dt - M23*di3/dt+ 1/C3* i3dt+ L3*di3/dt - M32*di3/dt+i3 *R3;

Получили систему из 3 уравнений:

i1+ i2+ i3 = 0;

 e1 = i1*R1+ 1/C3* i3dt + L3*di3/dt - M23*di2/dt + i3 *R3;

 e2 = 1/C2*i2dt + L2*di2/dt - M23*di3/dt+ 1/C3* i3dt+ L3*di3/dt - M32*di3/dt+i3 *R3;

б) символической.

Исходя из первого закона Кирхгофа для узла а:

I1+ I2+ I3 = 0;

Исходя из второго закона Кирхгофа для контура bdab:

20.5 * E1 + 20.5 *j* E1 = I1*R1 - I3*j*1/wC3+ I3 *R3 +I3*j*wL3 - I2*j*wM32;

Исходя из второго закона Кирхгофа для контура bcab:

E2 = - I2*j*1/wC2+I2*j*wL2-I2*j*wM32 - I3*j*1/wC3 + I3 *R3 - I3*j*wM23;

Получили систему из 3 уравнений:

 I1+ I2+ I3 = 0;

20.5 * E1 + 20.5 *j* E1 = I1*R1 - I3*j*1/wC3+ I3 *R3 +I3*j*wL3 -I2*j*wM32;

E2 = - I2*j*1/wC2+I2*j*wL2-I2*j*wM32 - I3*j*1/wC3 + I3 *R3 - I3*j*wM23;

Задача 5. Два электродвигателя переменного тока подключены параллельно к цепи с напряжением u2и работают с низким коэффициентом мощности cos1. Измерительные приборы в цепи каждого электродвигателя показывают токи I1 и I1 и мощности Р1 и Р2. Провода линии электропередачи имеют активное сопротивление r0 и индуктивное x0. Численные значения всех величин, необходимых для расчета, приведены в таблице вариантов. Необходимо:

А. Рассчитать заданную электрическую цепь и определить (до подключения конденсаторов):

Ток в линии

Напряжение в начале линии

Потерю и падение напряжения в линии

Активную, реактивную и полную мощности в конце линии и мощность потерь в проводах

Коэффициент мощности установки

КПД линии

Б. Рассчитать компенсационную установку для получения cos2=0,95 и определить для указанного значения коэффициента мощности емкость и мощность батареи конденсаторов.

В. Выполнить расчет цепи при условии работы компенсационной установки и найти величины, указанные в пункте А. Полученные результаты свести в таблицу и сравнить для различных режимов работы электродвигателя (до компенсации и при cos2=0,95). Отметить, какие выводы дает улучшение коэффициента мощности установки.

Дано.

R0, Ом Х0, Ом I1, А I2, А Р1, кВт Р2, кВт U2, В
0,06 0,05 90 70 15 12 220

Решение.

А. Найдем активное сопротивление каждого электродвигателя, исходя из того, что активная мощность равна произведению активного сопротивления на квадрат тока ветви. Значит:

Страницы: 1, 2, 3, 4, 5

рефераты
Новости