рефераты рефераты
Главная страница > Учебное пособие: Теорія електричних і електронних кіл  
Учебное пособие: Теорія електричних і електронних кіл
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Теорія електричних і електронних кіл

Р-n перехід при зовнішній напрузі, прикладеній до нього

Зовнішня напруга порушує динамічну рівновагу струмів в p-n-переході. P-n-перехід переходить в нерівноважний стан. Залежно від полярності напруги прикладеного до областей в p-n-переходу можливо два режими роботи.

1)  Прямий зсув p-n переходу. Р-n перехід вважається зміщеним в прямому напрямі, якщо позитивний полюс джерела живлення приєднаний до р- області, а негативний до n-області (рис.5.3)

2) 

При прямому зсуві, напруги к і U направлені назустріч один одному, результуюча напруга на p-n-переході убуває до величини к - U . Це призводить до того, що напруженість електричного поля убуває і поновлюється процес дифузії основних носіїв заряду. Крім того, пряме зсуві зменшує ширину p-n переходу, оскільки lp-n≈(к – U)1/2. Струм дифузії, струм основних носіїв заряду, стає багато більше дрейфового. Через p-n-перехід протікає прямий струм

Iр-n=Iпр=Iдиф+Iдр Iдиф .

При протіканні прямого струму основні носії заряду р- області переходять в n-область, де стають не основними. Дифузійний процес введення основних носіїв заряду в область, де вони стають не основними, називається інжекцією, а прямий струм - дифузійним струмом або струмом інжекції. Для компенсації не основних носіїв заряду тих, що накопичуються в p і n-областях в зовнішньому ланцюзі виникає електронний струм від джерела напруги, тобто принцип електронейтральності зберігається.

При збільшенні U струм різко зростає, - температурний потенціал, і може досягати великих величин оскільки пов'язаний з основними носіями концентрація яких велика.

2) Зворотний зсув, виникає, коли до р-області прикладений мінус, а до n-області плюс, зовнішнього джерела напруги (рис.1.3).

Така зовнішня напруга U включена послідовно з к . Вона збільшує висоту потенційного бар'єру до величини к + U ; напруженість електричного поля зростає; ширина p-n переходу зростає, оскільки lp-n≈(к + U)1/2 ; процес дифузії повністю припиняється і через p-n перехід протікає дрейфовий струм, струм неосновних носіїв заряду. Такий струм p-n-переходу називають зворотним, а оскільки він пов'язаний з неосновними носіями заряду, які виникають за рахунок термогенерації то його називають тепловим струмом і позначають - I0 , т.е.

Iр-n=Iобр=Iдиф+Iдр Iдр= I0.

Цей струм малий по величині оскільки пов'язаний з неосновними носіями заряду, концентрація яких мала. Таким чином, p-n переходу володіє односторонньою провідністю.

При зворотному зсуві концентрація неосновних носіїв заряду на межі переходу дещо знижується в порівнянні з рівноважною. Це приводить до дифузії неосновних носіїв заряду з глибини p і n-областей до межі p-n переходу. Досягнувши її неосновні носії потрапляють в сильне електричне поле і переносяться через p-n перехід, де стають основними носіями заряду. Дифузія неосновних носіїв заряду до межі p-n переходу і дрейф через нього в область, де вони стають основними носіями заряду, називається екстракцією. Екстракція і створює зворотний струм p-n переходу - це струм неосновних носіїв заряду.

 Величина зворотного струму сильно залежить: від температури навколишнього середовища, матеріалу напівпровідника і площі p-n переходу.

Температурна залежність зворотного струму визначається виразом ,

де - номінальна температура, - фактична температура, - температура подвоєння теплового струму

.

Тепловий струм кремнієвого переходу багато менше теплового струму переходу на основі германію  (на 3-4 порядка). Це пов'язано з к матеріалу.

Із збільшенням площі переходу зростає його об'єм, а отже зростає число неосновних носіїв тих, що з'являються в результаті термогенерациі і теплового струму.

 Отже, головна властивість p-n-переходу - це його одностороння провідність. Його ВАХ приведена рис.5.5.

Напівпровідникові діоди

Напівпровідниковий прилад з одним р-n-переходом, що має два омічні висновки, називають напівпровідниковим діодом (рис.5.5). Одна з областей р-n-структури (р+),

Статична вольт-амперна характеристика (ВАХ) напівпровідникового діода зображена рис.5.5. Тут же пунктиром показана теоретична ВАХ електронно-діркового переходу, визначувана співвідношенням

I=I0(еU/(mт)-1),

де Iо — зворотний струм насичення (струм екстракції, обумовлений неосновними носіями заряду; значення його дуже мало); U - напруга на p-n-переході; т = kT/e — температурний потенціал (k — постійна Больцмана, Т - температура, е - заряд електрона); m — поправочний коефіцієнт: m = 1 для германієвих р-n переходів і m = 2 для кремнієвих p-n-переходів при малому струмі).

Кремнієві діоди мають істотно менше значення зворотного струму в порівнянні з германієвими, унаслідок нижчої концентрації неосновних носіїв заряду. Зворотна гілка ВАХ у кремнієвих діодів при даному масштабі практично зливається з віссю абсцис. Пряма гілка ВАХ у кремнієвих діодів розташована значно правішим, ніж у германієвих.

Якщо через германієвий діод протікає постійний струм, при зміні температури падіння напруги на діоді змінюється приблизно на 2,5 мВ/°С:

dU/dT= -2,5 В/°С.

Для діодів в інтегральному виконанні dU/dT складає від —1,5 мВ/°С в нормальному режимі до —2 мВ/°С у режимі мікрострумів.

Максимально допустиме збільшення зворотного струму діода визначає максимально допустиму температуру діода, яка складає 80 – 100 °С для германієвих діодів і 150 – 200 °С для кремнієвих.

Мінімально допустима температура діода лежить в межах -(60 – 70)°С.

Диференціальним опором діода називають відношення приросту напруги на діоді до викликаного їм приросту струму:

rДИФ = dU/dI

Звідси витікає, що для p-n-переходу rДИФ т/I.

Побой діода. При зворотній напрузі діода більш певного критичного значення спостерігається різке зростання зворотного струму (рис. 5.6). Це явище називають пробоєм діода.

Пробій діода виникає або в результаті дії сильного електричного поля в р-n переході (рис.5.6, крива 1 і 2). Такий пробій називається електричним. Він може бути тунельним - крива 2 або лавинним - крива 1. Або пробій виникає в результаті розігрівання p-n-переходу при протіканні струму великого значення і при недостатньому теплоотводі, що не забезпечує стійкість теплового режиму переходу (рис. 1.5, крива 3). Такий пробій називається тепловим пробоєм. Електричний пробій обернемо, тобто він не приводить до пошкодження діода, і при зниженні зворотної напруги властивості діода зберігаються. Тепловий пробій є необоротним. Нормальна робота діода як елемент односторонньою провідністю можлива лише в режимах, коли зворотна напруга не перевищує пробивного значення Uо6р mах .

Значення допустимої зворотної напруги встановлюється з урахуванням виключення можливості електричного пробою і складає (0,5 - 0,8) Uпроб .

Місткості діода. Прийнято говорити про загальну місткість діода Сд , зміряної між виведеннями діода при заданій напрузі зсуву і частоті. Загальна місткість діода рівна сумі бар'єрної місткості С6 , дифузійної місткості Сдиф і місткості корпусу приладу Ск (рис.5.7).

Бар'єрна (зарядна) місткість обумовлена об'ємним зарядом іонів домішок, що некомпенсується, зосередженими по обидві сторони від межі р-n-переходу.

Модельним аналогом бар'єрної місткості може служити місткість плоского конденсатора, обкладаннями якого є р- і n-області, а діелектриком служить р-n перехід, що практично не має рухомих зарядів. Значення бар'єрної місткості коливається від десятків до сотень пікофарад; зміна цієї місткості при зміні напруги може досягати десятиразової величини.

Дифузійна місткість. Зміну величини об'ємного заряду не рівноважних електронів і дірок, викликану зміною прямого струму, можна розглядати як наслідок наявності так званої дифузійної місткості, яка включена паралельно бар'єрній місткості.

Значення дифузійної місткості можуть мати порядок від сотень до тисяч пікофарад. Тому при прямій напрузі місткість р-n переходу визначається переважно дифузійною місткістю, а при зворотній напрузі - бар'єрною місткістю.

Схема заміщення напівпровідникового діода зображена рис. 5.6. Тут Сд – загальна місткість діода, залежна від режиму; Rп – опір переходу, значення якого визначають за допомогою статичної ВАХ діода (Rп = U/I); rб – розподілений електричний опір бази діода і відводів.

 Іноді схему заміщення доповнюють місткістю між виведеннями діода СВ , місткостями Свх і Свых (показані пунктиром) і індуктивністю виведень LВ.

ТИПИ НАПІВПРОВІДНИКОВИХ ДІОДІВ

Випрямні діоди використовують для випрямляння змінних струмів частотою 50 Гц - 100 кГц. У них використовується головна властивість p-n-переходу - одностороння провідність. Головна особливість випрямних діодів великі площі p-n-переходу, оскільки вони розраховані на випрямляння великих по величині струмів. Основні параметри випрямних діодів даються стосовно їх роботи в однонапівперіодному випрямлячі з активним навантаженням (без конденсатора, що згладжує пульсації).

Середня пряма напруга Uпр..ср — середня за період пряма напруга на діоді при протіканні через нього максимально допустимого випрямленого струму.

Середній зворотний струм Iобр. ср — середній за період зворотний струм, вимірюваний при максимальній зворотній напрузі.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

рефераты
Новости