рефераты рефераты
Главная страница > Реферат: Математические модели формирования и использования запасов  
Реферат: Математические модели формирования и использования запасов
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Математические модели формирования и использования запасов

Подставив (4-12) в любое из уравнений системы (4-11), получим оптимальные значения:

Учитывая (4-13) и (4-14), из (4-5) получим оптимальные значения еще двух составляющих продолжительности цикла возобновления запасов:

Подставив τ2* и τ2* в формулы (4-5) и (4-4), получим оптимальные значения цикла повторения заказа и партии однопродуктовой поставки:


τц*=√ 2·K/(S·n)·√(1+ S / d)/ (1-n/l)= S1/B1 (4-17)

q* = √ 2·K·n/S·√(1+ S / d)/ (1-n/l)= S2/B1 (4-18)

Аналогично, подставив значения τ2* и τ3* из (4-13) и (4-14) в (4-9), определим оптимальные удельные издержки системы:

Lуд*=√ 2·K·n·S√ (1-n/l)/(1+ S / d)= √ 2·K·n·S· B1 (4-19)

И, наконец, находим оптимальные значения максимального уровня наличного запаса и задолженного спроса:

Y*= √ 2·K·n/S·√ (1-n/l)/(1+ S / d)= √ 2·K·n/(S · B1) (4-20)

y*= S / d·√ 2·K·n/S·√ (1-n/l)/(1+ S / d)= S / d·√ 2·K·n/(S · B1 ) (4-21)

Общие оптимальные издержки системы за время возобновления запаса составят:

Lобщ *= Lуд* ·τц* (4-22)

Модель с учетом неудовлетворенных требований при конечной интенсивности поступлений можно широко применять при:

1.  управлении поставками материальных ресурсов;

2.  определении оптимальной величины запуска деталей в производство с учетом переналадок на одном и том же технологическом оборудовании.

Во втором случае K – это издержки, связанные с переналадками. Предполагается, что они не зависят от величины выпускаемой партии и порядка запуска деталей в производство, l – интенсивность выпуска (производительность), τ1+ τ4 – время, затраченное на производство определенного типа изделий.

Из уравнений (4-13) – (4-22) можно получить ряд других частных моделей:

a)  при большой интенсивности пополнения, когда вся заказанная партия поступает одновременно; это значит, что l>>n и тогда можно принять n/l®0.

b)  при больших штрафах за допущение дефицита S/d®0, т.е. дефицит недопустим (d>>S).

c)  когда пункты а) и b) действуют одновременно. т.е. n/l®0, S/d®0, тогда имеем:

q* = √ 2·K·n/S

τц*=√ 2·K/(S·n)

Lуд*=√ 2·K·n·S

Последняя модель в отечественной и зарубежной литературе получила название Уилсона.Применяя формулы (4-17) – (4-19), можно показать, что за счет разумного компромисса между затратами на содержание и потерями от дефицита можно уменьшить общие затраты в единицу времени в 1+S/d раз. При n/l®0 и высоких штрафах за дефицит рассматриваемая модель превращается в модель Уилсона.

 

1.2 Оптимальные партии поставки для многопродуктовых моделей

Также как и для однопродуктовых поставок, суммарные издержки от функционирования системы складываются из издержек размещения заказов, содержания запаса и убытков вследствие дефицита.

Суммарные издержки размещения заказа:

∑i Кi = К0(1+ γ·N)

где К0 – издержки, не зависящие от числа одновременно заказанных продуктов и размера партии поставки;

γ – доля издержек, учитывающая размещение заказа по каждому i-тому продукту;

N – число продуктов.

Правая часть формулы (4-23) используется для расчета оптимального поставочного комплекта. Если же рассчитываются оптимальные партии запуска деталей в производство, изготавливаемых на одном и том же оборудовании, тогда используется левая часть формулы (4-23), где Кi --издержки переналадок. Причем, Кi не зависят от последовательности запуска деталей в производство. Период возобновления заказов τц* одинаков для всех одновременно заказываемых N продуктов.

Для удельных издержек работы системы с учетом интенсивности поступления и потерь от дефицита (т.е. с учетом неудовлетворенных требований) справедлива формула:

Lуд = 1/ τц· ∑i Кi+0,5· τц·∑i[(1-ni / l i)/(1+ S i / d i)]

Взяв частную производную и приравняв к нулю ∂Lуд/∂ τц=0, получим:

τц* = √2· ∑i Кi / [∑i(S i·ni·(1-ni / l i)/(1+ S i / d i))]

Тогда можно найти оптимальные размеры партии запуска деталей в производство из формулы:

qi* = n i · τц*

Оптимальная величина удельных издержек, с учетом (4-24), составит:

Lуд * = √2· ∑i Кi · [∑i(S i·ni·(1-ni / l i)/(1+ S i / d i))] (4-27)

Минимизация издержек от переналадок достигается из условия:

∑i=1N(ni / l i)≤1 (4-28)

В общем случае ограничение по ресурсам можно отразить в формуле:

∑i aij · qi ≤ Aj, j=1,n (4-29)

где aij – расход соответствующего ресурса на единицу продукции;

Aj – величина ограничения по виду ресурса (норматив).

Если условие (4-29) не выполняется, то рассчитывается новое значение оптимального периода выпуска деталей или партии поставки из условия:

τ*= min{ƒ/(∑i ƒ i ·ni), A/(∑i α i ·ni)} (4-30),

где, например, первое ограничение относится к складским площадям, а второе – к оборотным средствам. И, далее, все параметры системы пересчитываются заново.

 

1.3 Определение оптимальных параметров системы управления движением запасов

Применим рассмотренную в 4.1 модель управления запасами к конкретному примеру, который заключается в следующем: на одном и том же оборудовании производится три типа полуфабрикатов.

Объект моделирования – склад готовой продукции, система управления движением запасов с учетом ограничений на складские помещения и оборотные средства.

Проблемная ситуация – определение оптимальных значений партии поставки полуфабрикатов, их максимального уровня запаса, времени производства, бездефицитной и дефицитной работы системы управления запасами для каждого вида полуфабрикатов при заданных условиях.

Наблюдаемые параметры:

·  стоимость переналадок оборудования Ki [ден. ед.], которая не зависит от очередности выпуска полуфабрикатов, отправляемых затем в неподалеку расположенные склады общей площадью F = 300 м²;

·  стоимость содержания единицы запаса полуфабрикатов Si
[ден. ед./ (ед. п/фабр.: ед. врем.)];

·  скорость поступления li [ ед. п/фабр.: (ед. врем.) ];

·  скорость расходования Vi [ ед. п/фабр.: (ед. врем.) ];

·  нормативы по складским помещениям fi [ м/(ед. п/фабр.) ];

·  нормативы по оборотным средствам ai [ ден. ед./ед. п/фабр.];

·  потери от дефицита di [ ден.ед./(ед. п/фабр.:ед. врем.) ];величина оборотных средств не должна превышать значения;

·  А0 = 20000 [ ден. ед.].

Ненаблюдаемые параметры:

1)  партии поставки полуфабрикатов qi* ;

2)  максимальный уровень запасов полуфабрикатов Yi* ;

3)  времени производства полуфабрикатов τпрi*;

4)  времени формирования запасов τi1*;

5)  времени ликвидации дефицита τi4*;

6)  времени расходования запаса τi2*;

7)  времени бездефицитной работы Hi* ;

8)  времени работы при наличие дефицита Ni* для каждого вида полуфабрикатов.

Адекватность – соответствие расчетных и фактических параметров системы управления движением запасов.

Математический аппарат – дифференциальное исчисление, частные производные, алгебраические уравнения.

Результат моделирования – организация системы оптимального управления запасами; оптимальные значения партии поставки полуфабрикатов qi* , максимальный уровень запасов полуфабрикатов Yi* ; времени производства полуфабрикатов τпрi*; времени формирования запасов τi1*; времени ликвидации дефицита τi4*; времени расходования запаса τi2*; времени бездефицитной работы Hi* ; времени работы при наличие дефицита Ni* для каждого вида полуфабрикатов (табл. 1.1.).

Таблица 1.1

Исходные данные по полуфабрикатам

I Vi

li

Ki Si di fi

ai

1

49 245 52 6 18 1,5 50

2

178 685 78 8 32 1,4 50

3

266 1520 43 10 20 2 100

Страницы: 1, 2, 3, 4

рефераты
Новости