рефераты рефераты
Главная страница > Контрольная работа: Endogenous Cycle Models  
Контрольная работа: Endogenous Cycle Models
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Контрольная работа: Endogenous Cycle Models

Figure 6 - Dynamics of the Kaldor Cycle

The rest of the story then follows in reverse. At E in Figure 6, we are at a pretty low output level and thus capital decumulates and so K declines from K2 past K0 and then on towards K1. In the meantime, our lower two equilibrium begin to move towards each other and A and B meet and merge at point F at Y1 (equivalent to our old A=B). Note that the stability arrows in Figure 6 are such that now we must have a catastrophic jump in output from F to point G (the high equilibrium to which point C moved to as capital fell from K2 to K1). From G, the process then begins again as capital rises at high output levels from K1 to K0 and onto K2.

The output cycle that can be traced out from the arrows drawn in Figure 6 (from slow movement from G to C to D then catastrophic jump to E then slow movement from E to A to F then catastrophic jump to G, etc) is Kaldor's trade cycle: output thus fluctuates over time between the boundaries imposed by the extreme points E (lower bound) and G (upper bound). Notice that the cycle is completely endogenous: no exogenous shocks, ceilings, floors, structurally unstable parameter values or ratchets are necessary to obtain constant cycles. The non-linearity of the curves, which are economically-justified and not exceptional, is more than sufficient to generate endogenous cycles.

This version of Kaldor's model is derived a bit more formally in Varian (1979) using catastrophe theory. However, we can also use regular non-linear dynamical theory, which makes no assumptions about the relative speeds of the dynamics, to obtain a cycle from the Kaldor model - and this is what Chang and Smyth (1971) do. We have already derived the isokine dY/dt = 0, so to get the full story, we need the dK/dt = 0 isokine. This is simple. dK/dt = I (Y, K), thus at steady-state, dK/dt = 0 = I (Y, K) so the isokine has slope:

dK/dY|K = - IY/IK > 0

as IY < 0 and IK > 0. Thus, the dK/dt = 0 isokine is positive sloped. We have superimposed it on the other isokine in Figure 7. For the off-isokine dynamics, note that:

d (dK/dt) /dY = IY > 0

so that the directional arrows drawn in for the dK/dt = 0 isokine imply that to the left of it, dK/dt < 0 (capital falls) whereas to the right, dK/dt > 0 (capital rises). In the figure below, we have superimposed the isokines for the whole system. As is obvious, the global equilibrium, where dK/dt = dY/dt = 0, is at K* and Y* (point E). Now, as we showed earlier, the trace of the system, tr A, is positive around point E, thus we know that the global equilibrium is locally unstable - as is shown in Figure 7 by the unstable trajectory that emerges when we move slightly off the equilibrium point E. .

Fig.7 - Kaldor's Trade Cycle

However, notice that the system as a whole is "stable": when we draw a "box" around the diagram by imposing upper boundaries Km and Ym in Figure 7 and letting the axis act as lower boundaries, then the directional phase arrows around the boundaries of the box indicate that we do not get out of the confines of this box - any trajectory which enters the "box" will not leave it. Indeed, from the distant boundaries, it almost seems as if we are moving towards the global equilibrium (K*, Y*). Thus, while the equilibrium (K*, Y*) is locally unstable, we are still confined within this "box". Note that we are assuming complex roots to obtain stable and unstable focal dynamics as opposed to simply monotonic ones.

In fact, these three conditions - complex roots, locally unstable equilibrium and a "confining box" - are all that is necessary to fulfill the Poincarй-Bendixson Theorem on the existence of a dynamic "limit cycle". This limit cycle is shown by the thick black circle in Figure 7 (not perfectly drawn) orbiting around the equilibrium. Any trajectory that begins within the circle created by the limit cycle will be explosive and move out towards the cycle. In contrast, any trajectory that begins outside the circle will be dampened and move in towards it. Two such trajectories are shown in Figure 7. Thus, the limit cycle "attracts" all dynamic trajectories to itself and once a trajectory confluences with the limit cycle, it proceeds to follow the orbit of the limit cycle forever (as shown by the directional arrows on the cycle).

In essence, then, all trajectories are "stable", but we are not speaking of a stable path towards a point (such as an equilibrium) but rather of a stable path towards another path, i. e. the limit cycle. This is the limit cycle version of the Kaldor trade cycle. For details on this version of the Kaldor model and more general non-linear dynamics, particularly on Poincarй-Bendixson and, more generally, the Hopf-Bifurcation necessary to yield dynamic limit cycles, consult Chang and Smith (1971), Gabisch and Lorenz (1987), Lorenz (1989) and Rosser (1991).


Conclusion

Beyond the fact that these pioneers of non-linear dynamic systems in economics were all Keynesians, there is a natural fellowship between non-linear dynamics and Keynesian cycle theory: namely, that non-linear systems, in contrast to linear systems, are far more capable of yielding regular endogenous macrofluctuations. This implies that fluctuations are the outcome and indeed an integral part of a working economy. As this concept was central to Keynes's (1936) static theory, it is no surprise that Oxbridge researchers insist on endogenous cycles as a way of extending it into a dynamic context. In contrast, Neoclassical theory seems to be more apt to consider equilibrium as opposed to fluctuations as the central feature of a working economy - and thus prefer to conceive of "fluctuations" as the results of erratic displacements or aberrations from a working economy. The Neoclassical concept of the economy, thus, is perfectly compatible with linear systems; the Keynesian concept of endogenous cycles, however, seems to require non-linear structures.


Literature

1.  Dornbusch R. и др. Macroeconomics/ R. Dornbusch, S. Fischer, R. Startz. - 8th ed. - Boston etc.: Irwin: McGraw-Hill, 2007.

2.  McConnel C. R., Brue S. L. Economics: Principles, Problems and Policies. - 14 th ed. - Boston etc.: Irwin: McGraw-Hill, 2001.

3.  Speegle R., Giesecke W. Business World: A Collection of Readings on Contemporary Issues. - Oxford etc.: Oxford Univ. Press, 2003.

4.  Jobs and Economic Development: Strategies and Practice/Ed.: R. P. Giloth. - Thousand Oaks (Ca) etc.: SAGE, 1998.

5.  Walstad W. B., Bingham R. C. Study Guide to accompany McConnell and Brue Economics. - 14 th ed. - Boston etc.: McGraw-Hill, 1999.

6.  Макроэкономика: Учеб. для вузов по направлению "Экономика"/ Л.С. Тарасевич, В.П. Гальперин, П.И. Гребников, А.И. Леусский; Под ред.Л.С. Тарасевича. - 3-е изд., перераб. - СПб.: Изд-во С. - Петерб. гос. ун-та экономики и финансов, 2004.


Страницы: 1, 2, 3

рефераты
Новости