рефераты рефераты
Главная страница > Реферат: Уран (элемент)  
Реферат: Уран (элемент)
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Уран (элемент)

Гексафториду урана свойственна большая химическая активность. Коррозия труб, насосов, емкостей, взаимодействие со смазкой механизмов – небольшой, но внушительный перечень неприятностей, которые пришлось преодолеть создателям диффузионных заводов. Встретились трудности и посерьезнее.

Гексафторид урана, получаемый фторированием естественной смеси изотопов урана, с «диффузионной» точки зрения можно рассматривать как смесь двух газов с очень близкими молекулярными массами – 349 (235 + 19·6) и 352 (238 + 19·6). Максимальный теоретический коэффициент разделения на одной диффузионной ступени для газов, столь незначительно отличающихся по молекулярной массе, равен всего 1,0043. В реальных условиях эта величина еще меньше. Получается, что повысить концентрацию урана-235 от 0,72 до 99% можно только с помощью нескольких тысяч диффузионных ступеней. Поэтому заводы по разделению изотопов урана занимают территорию в несколько десятков гектаров. Площадь пористых перегородок в разделительных каскадах завода – величина примерно того же порядка.

Коротко о других изотопах

В естественный уран, кроме урана-235 и урана-238, входит уран-234. Содержание этого редкого изотопа выражается числом с четырьмя нулями после запятой. Гораздо доступнее искусственный изотоп – уран-233. Его получают, облучая в нейтронном потоке ядерного реактора торий:

23290Th + 10n → 23390Th –(β–)→ 23391Pa –(β–)→ 23392U.

По всем правилам ядерной физики уран-233, как изотоп нечетный, делится тепловыми нейтронами. И самое главное, в реакторах с ураном-233 может происходить (и происходит) расширенное воспроизводство ядерного горючего. В обычном реакторе на тепловых нейтронах! Расчеты показывают, что при выгорании в ториевом реакторе килограмма урана-233 в нем же должно накопиться 1,1 кг нового урана-233 (в результате захвата нейтронов ядрами тория).

Уран-ториевый цикл в реакторах на тепловых нейтронах – главный конкурент уран-плутониевого цикла воспроизводства ядерного горючего в реакторах на быстрых нейтронах... Собственно, только из-за этого отнесли к числу стратегических материалов элемент №90 – торий.

Другие искусственные изотопы урана не играют заметной роли. Стоит упомянуть еще лишь об уране-239 – первом изотопе в цепи превращений уран-238 → плутоний-239. Его период полураспада всего 23 минуты.

Изотопы урана с массовым числом больше 240 в современных реакторов не успевают образоваться. Слишком мало времени жизни урана-240, и он распадается, не успев захватить нейтрон.

В сверхмощных нейтронных потоках термоядерного взрыва ядро урана за миллионную долю секунды успевает захватить до 19 нейтронов. При этом рождаются изотопы урана с массовыми числами от 239 до 257. Об их существовании узнали по появлению в продуктах термоядерного взрыва далеких трансурановых элементов – потомков тяжелых изотопов урана. Сами «основатели рода» слишком неустойчивы к бета-распаду и переходят в высшие элементы задолго до извлечения продуктов ядерных реакций из перемешанной взрывом породы.

В современных тепловых реакторах сгорает уран-235. В уже существующих реакторах на быстрых нейтронах освобождается энергия ядер распространенного изотопа – урана-238, и если энергия – подлинное богатство, то урановые ядра уже в недалеком будущем облагодетельствуют человечество: энергия элемента №92 станет основой нашею существования.

Жизненно важно сделать так, чтобы уран и его производные сгорали только в атомных реакторах мирных энергетических установок, сгорали медленно, без дыма и пламени.

Урановые часы

Еще в 1904 г. Эрнест Резерфорд обратил внимание на то, что возраст Земли и древнейших минералов – величина того же порядка, что и период полураспада урана (тогда еще не существовало понятия «изотопы»). Тогда же он предложил по количеству гелия и урана, содержащихся в плотной породе, определять ее возраст.

Но вскоре выяснилось, что определять возраст минералов точно по рецепту Резерфорда – дело ненадежное: крайне подвижные атомы гелия легко диффундируют даже в плотных породах. Они проникают в окружающие минералы, а вблизи материнских урановых ядер остается значительно меньше гелия, чем следует по законам радиоактивного распада. Поэтому в наши дни возраст пород вычисляют по соотношению урана и радиогенного свинца – конечного продукта распада урановых ядер.

Обычные часы повторяют свои показания. Возраст измеряется «накопленным» временем. Такое время отсчитывали древние клепсидры, по желобам которых вода текла из сосуда в сосуд (подробнее о водяных часах см. главу «Прочие способы измерения времени» в книге С. Михаля «От гномона до атомных часов»). В урановых часах по желобу ядерных превращений перетекают изотопы тяжелых элементов. Здесь в отличие от клепсидры другие масштабы: вместо минут и часов – миллиарды лет.

Урановые часы – весьма универсальный инструмент. Изотопы урана содержатся во многих породах. Концентрация урана в земной коре в среднем равна трем частям на миллион. Этого достаточно, чтобы измерить соотношение урана и свинца, а затем по несложным формулам радиоактивного распада рассчитать время, прошедшее с момента кристаллизации минерала.

Урано-свинцовым способом ученые измерили возраст древнейших минералов, а по возрасту метеоритов определили дату рождения планеты Земля. Известен и возраст лунного грунта. Самые молодые куски лунного вещества прожили срок больше возраста древнейших земных минералов. Уже в течение 3 млрд лет на Луне не бывает вулканических катастроф и естественный спутник Земли остается пассивным телом. Только метеориты и «солнечный ветер» изменяют его поверхность...

Отсчитывать возраст минералов можно и по спонтанному делению урановых ядер. Сравнительно недавно разработана остроумная методика выявления и подсчета актов спонтанного деления. На ее основе и возник способ датировки твердых тел, содержащих уран. Возраст твердого тела пропорционален числу распавшихся в нем атомов урана, а это число определяется числом следов – треков, оставляемых осколками в веществе. Дело лишь за тем, чтобы подсчитать число треков.

Осколки спонтанного деления с громадной скоростью врезаются в атомные порядки окружающего вещества. Они оставляют за собой следы из смещенных со своих мест атомов. Оказалось, что после определенной химической обработки (травления) следы осколков становятся видимыми в микроскоп; их можно сосчитать. По отношению концентрации урана в исследуемом образце к «концентрации» треков вычисляют и возраст старинной вазы, и дату образования слюды – величины, отличающиеся в десятки миллионов раз. Это еще раз подтверждает исключительную универсальность урановых часов.

III. Как было открыто спонтанное деление

В 1938 г. был открыт процесс деления атомных ядер урана нейтронами. А год спустя молодые советские физики К.А. Петржак и Г.Н. Флеров, работая под руководством И.В. Курчатова, открыли спонтанное (самопроизвольное) деление ядер урана на два осколка со сравнительно близкими массами. В дипломе на открытие записано, что это «новый вид радиоактивности, при котором первоначальное ядро превращается в два ядра, разлетающихся с кинетической энергией около 160 МэВ».

Распространено мнение, что спонтанное деление – процесс редкий. Это не так: спонтанно делятся ядра всех элементов тяжелее тория. Этот процесс лимитирует массу ядра, определяет границу периодической системы и, следовательно, облик Вселенной. Это, пожалуй, наиболее важный из всех процессов ядерного распада. Спонтанное деление оказалось основным процессом распада для первого изотопа элемента №104 – курчатовия, синтезированного в 1964 г. в Дубне группой ученых во главе с академиком Г.Н. Флеровым.

О том, как было открыто спонтанное деление, о людях науки конца 30-х годов рассказал в 1969 г. корреспонденту «Химии и жизни» один из авторов открытия, доктор физико-математических наук Константин Антонович Петржак.

Спонтанное деление ядер урана было впервые обнаружено в 1939 г. в Ленинграде. Но окончательное подтверждение открытия удалось получить лишь через год под Москвой. «Под» – не в смысле «поблизости от», а в самом прямом смысле этого слова. Можно указать место последних опытов еще более определенно: не просто под Москвой, а под нынешним Ленинградским проспектом Москвы, на станции метро «Динамо»...

В дипломе на открытие, который мы потом получили, стоят лишь две фамилии – Г.Н. Флерова и моя, по их могло бы (а может быть, и должно бы) быть три.

Чудом сохранился наш первый отчет об этой работе – обычный отчет, какие во всех лабораториях пишут в конце года. Обратите внимание на последнюю страницу:

«Тот факт, что тяжелые ядра могут самопроизвольно делиться, приводит к крайне существенным следствиям не только в ядерной физике, но и в химии в вопросе о границе периодической системы элементов. Очередная задача исследования заключается, однако, в настоящий момент не столько в анализе этих следствий, сколько в накоплении экспериментальных фактов, начало которому, как мы надеемся, положено этой работой.»

Во всяком случае, так мы считали 30 лет назад. Читайте дальше: «Выражаем искреннюю благодарность нашему руководителю проф. И.В. Курчатову, наметившему все основные контрольные опыты и принимавшему самое непосредственное участие в обсуждении результатов».

Не сочтите эту фразу просто актом вежливости. Заслуга Игоря Васильевича не меньше нашей. Но руководитель, «наметивший все основные контрольные опыты и принимавший самое непосредственное участие в обсуждении результатов», наотрез отказался стать соавтором работы, сделанной руками его учеников. А мы действительно были его учениками – и я, и Георгий Николаевич – Г.Н., как его зовут теперь физики.

В предвоенные годы ядерной физикой занимались сравнительно немногие. И еще меньше было людей, которые, как Курчатов, верили в прикладные возможности этой науки. Именно этим объясняю я тот, к примеру, факт, что почти все приборы для исследований – счетчики частиц, усилители импульсов – мы делали своими руками. Один из таких приборов стал темой моей дипломной работы, а руководителем ее был Игорь Васильевич. Он в то время разрывался на три фронта – вел лабораторию в Физтехе (главная ядерно-физическая лаборатория тех лет), где всю атомную тематику Абрам Федорович Иоффе отдал «на откуп» Курчатову, заведовал физическим отделом у нас в РИАНе*, да еще заведовал кафедрой в Педагогическом институте. Бороды он еще не носил.

Страницы: 1, 2, 3, 4, 5

рефераты
Новости