рефераты рефераты
Главная страница > Реферат: Уран (элемент)  
Реферат: Уран (элемент)
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Уран (элемент)

Характерно, что внешняя электронная оболочка ионов урана всегда заполнена целиком; валентные электроны находятся в предыдущем электронном слое, в подоболочке 5f.

Если сравнивать уран с другими элементами, то очевидно, что больше всего на него похож плутоний. Основное различие между ними – больший ионный радиус урана. Кроме того, плутоний наиболее устойчив в четырехвалентном состоянии, а уран – в шестивалентном. Это помогает разделить их, что очень важно: ядерное горючее плутоний-239 получают исключительно из урана, балластного с точки зрения энергетики урана-238. Плутоний образуется в массе урана, и их надо разделить!

Впрочем, раньше нужно получить эту самую массу урана, пройдя длинную технологическую цепочку, начинающуюся с руды. Как правило, многокомпонентной, бедной ураном руды.

Путь от руды до урана

Самая первая стадия уранового производства – концентрирование. Породу дробят и смешивают с водой. Тяжелые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжелые минералы. Вторичные минералы элемента №92 легче, в этом случае раньше оседает тяжелая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран).

Следующая стадия – выщелачивание концентратов, перевод элемента №92 в раствор. На практике применяют кислотное и щелочное выщелачивание. Первое – дешевле, поскольку для извлечения урана используют серную кислоту. Но если в исходном сырье, как, например, в урановой смолке, уран находится в четырехвалентном состоянии, то этот способ неприменим: четырехвалентный уран в серной кислоте практически не растворяется. И либо нужно прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния.

Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит доломит или магнезит. Слишком много кислоты приходится тратить на их растворение, и в этих случаях лучше воспользоваться едким натром.

Проблему выщелачивания урана из руд быстро и эффективно решает кислородная продувка. В нагретую до 150°C смесь урановой руды с сульфидными минералами подают поток кислорода. При этом из сернистых минералов образуется серная кислота, которая и вымывает уран.

Как видим, проблем и сложностей на этой стадии производства немало, но все они чисто инженерные или экономические, разрешимые и большей частью разрешенные. Химические же сложности только начинаются, и, как говорится, это еще цветочки...

Ягодки начинаются на следующем этапе, когда из полученного раствора нужно избирательно выделить уран. Современные методы – экстракция и ионный обмен – позволили решить и эту проблему. Но сложностей здесь было много. Раствор содержит не только уран, но и другие катионы. Некоторые из них в определенных условиях ведут себя так же, как уран: экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того пли иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно.

Методы ионного обмена и экстракции хороши еще и тем, что позволяют достаточно полно извлекать уран из бедных растворов, в литре которых лишь десятые доли грамма элемента №92.

После этих операций уран переводят в твердое состояние – в один из окислов или в тетрафторид UF4. Но этот уран еще надо очистить от примесей с большим сечением захвата тепловых нейтронов – бора, кадмия, лития, редких земель. Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Вот и приходится уже полученный технически чистый продукт еще раз растворять – на этот раз в азотной кислоте. Уранилнитрат UO2(NO3)2 при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают пероксид UO4   2 H2O) и начинают осторожно прокаливать. В результате этой операции образуется трехокись урана UO3, которую восстанавливают водородом до UO2.

Это вещество – предпоследнее на пути от руды к металлу. При температуре от 430 до 600°C оно реагирует с сухим фтористым водородом и превращается в тетрафторид UF4. Именно из этого соединения обычно получают металлический уран. Получают с помощью кальция или магния обычным восстановлением.

Таков путь к металлическому урану. Но нам придется еще раз возвратиться к стадии выщелачивания, ибо этой процедуре подвергаются не только концентраты урана, но и главные урановые изделия – отработавшие свое твэлы ядерных реакторов. Четверть века назад ядерные реакторы обычно называли атомными котлами, подчеркивая тем самым суть происходящих в них процессов: главное – это выделение энергии. Но если в обычных топках горючее полностью (или почти полностью) сгорает, то в ядерном реакторе все обстоит иначе. В рабочем цикле выгорает лишь незначительная доля урана: «протопить» реактор до полного выгорания ядерного горючего технически невозможно. Но в реакторе уран «зашлаковывается» продуктами деления; меньше в нем становится урана-235; цепная реакция неизбежно начинает глохнуть, и поддержать ее можно, только сменив твэлы. А в отработанных твэлах осталась еще большая часть ядерного горючего, и уран из них необходимо вновь пустить в дело.

Поэтому старые твэлы снимают и отправляют на переработку: растворяют их в кислотах и извлекают уран из раствора методом экстракции. Уран легко образует экстрагируемые комплексы и переходит в органическую фазу, а осколки деления, от которых нужно избавиться, остаются в водном растворе. Из органики выделяют уран практически теми же методами, как и при получении его из руды.

Следует отметить, что именно урановая промышленность СССР стала первым практически безотходным химическим производством. Проблемы утилизации, очистки, охраны окружающей среды решались одновременно с главными технологическими проблемами.

Металл

Чем плотнее упаковано ядерное горючее, тем быстрее достигаются критические размеры ядерного реактора, тем быстрее он может начать работать. Самое плотное урансодержащее вещество, конечно же, металлический уран. Поэтому твэлы современных ядерных реакторов делают из металлического урана. На заре атомного века реакторы загружали окисью урана. Металла не хватало несмотря на предпринятые чрезвычайные меры; не хватало его главным образом потому, что слишком сложной оказалась технология получения урановых слитков.

Металлический уран – материя капризная. Нагретый металл реагирует со всеми применяемыми в обычной металлургии тугоплавкими материалами, урановые порошки вступают в реакции почти со всеми составляющими атмосферы уже при комнатной температуре.

Современный аппарат для восстановления урана – это бесшовная стальная труба, футерованная окисью кальция; иначе материал трубы будет взаимодействовать с ураном. Трубу загружают смесью тетрафторида урана и магния (или кальция) и подогревают до 600°C. Затем включают электрический запал. Быстрая экзотермическая реакция восстановления протекает мгновенно. Реакционная смесь нагревается до высокой температуры и целиком плавится. Тяжелый жидкий уран (его температура плавления 1132°C) стекает на дно аппарата.

Аппарат охлаждается, начинается кристаллизация урана. Его атомы выстраиваются в строгом порядке, образуя кубическую решетку.

Первый фазовый переход происходит при 774°C; кристаллическая решетка остывающего металла становится тетрагональной. Когда температура слитка падает до 668°C, атомы вновь перестраивают свои ряды, располагаясь волнами в параллельных слоях. Плотность достигает максимума – 19,04 г/см3. Других изменений при понижении температуры со слитком не происходит.

«Волнистая» урановая структура делает слиток непрочным. Атомы отдельных слоев связаны между собой довольно надежно, зато связь между слоями заметно слабее; поэтому при комнатной температуре уран очень хрупок. Упрочить металл можно, сохранив высокотемпературную кубическую решетку. Такую решетку имеет сплав урана с молибденом. Именно поэтому молибден стал главным легирующим элементом в производстве металлического урана. Молибден придает урану и другое полезное качество. Как правило, в мощных реакторах на тепловых нейтронах (а именно такие реакторы распространены в наше время) топливные элементы охлаждают водой. При малейшем нарушении защитной оболочки блок из чистого урана под угрозой: уран разлагает воду, свободный водород вступает в реакцию – образуется гидрид урана H3U. Этот порошок осыпается и уносится водяным потоком – твэл разрушается. Картина совсем иная, если вместо чистого урана применен ураномолибденовый сплав. Такие сплавы устойчивы к действию воды и служат великолепным материалом для главных урановых изделий – твэлов атомных реакторов.

Легкий изотоп тяжелого элемента

Рассказывая о получении элемента №92, мы умышленно опустили одну важную стадию. Как известно, не всякий уран способен поддерживать цепную ядерную реакцию. Уран-238, на долю которого в природной смеси изотопов приходится 99,28%, на это не способен. Из-за того и превращают в плутоний уран-238, а природную смесь изотопов урана стремятся либо разделить, либо обогатить изотопом уран-235, способным делиться тепловыми нейтронами.

Способов разделения урана-235 и урана-238 разработано немало. Чаще всего пользуются методом газовой диффузии. Суть его в том, что если через пористую перегородку пропускать смесь двух газов, то легкий будет проходить быстрее. Еще в 1913 г. Ф. Астон таким путем частично разделил изотопы неона.

Большинство соединений урана при нормальных условиях – твердые тела и в газообразное состояние могут быть переведены только при очень высоких температурах, когда ни о каких тонких процессах разделения изотопов не может идти и речи. Однако бесцветное соединение урана с фтором – гексафторид UF6 возгоняется уже при 56,5°C (при атмосферном давлении). UF6 – самое летучее соединение урана, и оно лучше всего подходит для разделения его изотопов методом газовой диффузии.

Страницы: 1, 2, 3, 4, 5

рефераты
Новости