рефераты рефераты
Главная страница > Курсовая работа: Проектирование твердотопливного ракетного двигателя третьей ступени трехступенчатой баллистической ракеты  
Курсовая работа: Проектирование твердотопливного ракетного двигателя третьей ступени трехступенчатой баллистической ракеты
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Проектирование твердотопливного ракетного двигателя третьей ступени трехступенчатой баллистической ракеты

Вывод:

Постоянство (примерное) значения величины σ говорит о том, что тяга РДТТ остается величиной постоянной при полном выгорании топлива.

 

2.4 Расчет звездчатого заряда РДТТ

Звездчатые заряды нашли очень широкое применение в современных двигателях твердого топлива, благодаря отработанной технологии изготовления и высокому коэффициенту внутреннего заполнения, однако звездчатые заряды имеют дигрессивные остатки топлива, которые можно устранить профилированием внутренней поверхности камеры сгорания и применением вкладышей из легких материалов.

Также по сравнению со щелевыми зарядами они дают меньшее время работы, а также наличие участков с повышенной концентрацией напряжений.

Исходные данные:

Тяга двигателя Р = 160 кН;

Ускорение свободного падения g = 9,81 м/с2;

Время работы двигателя τ = 60 с;

Диаметр заряда Dз = 1,457 м;

Плотность топлива ρт = 1770 кг/м3;

Температура горения топлива Тк = 3300 К;

Скорость горения топлива u = 0,0085 м/с;

Удельный импульс тяги с учетом потерь Jуд = 2352 м/с;

Газовая постоянная R = 307 Дж/(кг·К);

Давление в КС рк = 4 МПа;

Порядок расчета:

Величина скорости горения, которую можно допустить в канале заряда, исходя из условия отсутствия эрозионного горения:

,

где  – удельный вес топлива;

 – приведенная сила топлива.

Площадь канала при отсутствии эрозионного горения:

,

где  – вес топлива;

 – масса топливного заряда;

χ=1 – коэффициент тепловых потерь.

Находим потребный коэффициент заполнения поперечного сечения камеры:

,

где  – площадь КС.

Определяем потребное значение относительной толщины свода заряда:

.


По графикам зависимостей  подбираем число лучей nл и тип заряда, обеспечивающий потребный коэффициент заполнения. Выбираем звездчатый заряд со скругленными углами nл = 6.

По графикам  и  определяем характеристику прогрессивности горения заряда σs и коэффициент дигрессивно догорающих остатков λК. σs = 1,78; λК = 0,09.

Определяем длину заряда:

.

Угол раскрытия лучей:

.

Из технологических соображений выбираем радиус скругления:

.

По таблице определяем значение углов: β = 86,503; θ = 40,535.

Определяем толщину свода заряда:

.

L3/D3 = 1,58/1,457 = 1,084 - это значение лежит в диапазоне среднестатистических данных для третьей ступени.


Схема звездчатого заряда.

2.5 Расчет на прочность корпуса РДТТ

Расчет позволяет определить толщину элементов корпуса, находящихся под давлением газов в КС. Необходимо, чтобы корпус был прочен и имел минимальную массу и стоимость.

Исходные данные:

Давление в КС РДТТ

;

Внутренний диаметр КС

;

Материал обечайки КС Сталь;
Предел прочности

;

Модуль упругости

;

Порядок расчета:

Толщина металлической обечайки корпуса


 м,

Где  - коэффициент запаса прочности;

 - временное сопротивление материала обечайки с учетом нагрева, которое равно

;

 - коэффициент, учитывающий снижение прочности при нагреве .

 - максимально возможное давление в КС РДТТ при максимальной температуре эксплуатации заряда

;

 - максимальное расчетное давление в КС РДТТ;

 - коэффициент, учитывающий разброс по давлению и скорости горения заряда,  =1,15.

Принимаем м.

силовой оболочки сопловой крышки

Толщина сопловой крышки РДТТ

,

где  - запас прочности сопловой

 - внутренний диаметр силовой оболочки КС;

- предел прочности материала сопловой крышки;

 - коэффициент, определяющий высоту днища по отношению к диаметру .

Для сопловой крышки принимаем тот же материал, что и для обечайки.

Принимаем .

Расчет переднего днища

Исходные данные:

Внутренний диаметр

;

Диаметр заряда

;

Материал днища Сталь;
Предел прочности

;

Диаметр отверстия под фланец

.

Порядок расчета:

Толщина днища

,

где  - коэффициент, учитывающий снижение прочности днища от отверстия под воспламенитель,

.

Наиболее нагруженными являются точки стыка обечайки корпуса РДТТ и днища, а также стыка днища и воспламенителя.

Главные радиусы кривизны  и  для выбранных расчетных точек (рис. 9).

Рис. 9 Расчетная схема к определению радиусов кривизны днища  и  в расчетных точках днища.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8

рефераты
Новости