рефераты рефераты
Главная страница > Курсовая работа: Кожухотрубчатые теплообменные аппараты  
Курсовая работа: Кожухотрубчатые теплообменные аппараты
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Кожухотрубчатые теплообменные аппараты

Курсовая работа: Кожухотрубчатые теплообменные аппараты

ВВЕДЕНИЕ

Развитие силовых установок во всех областях техники в настоящее время характеризуется резким увеличением мощности в одном агрегате, повышением эффективного к.п.д. установок. Успешное решение этих задач не возможно без применения совершенных теплообменных устройств.

В зависимости от назначения аппараты используют как нагреватели и как охладители. Теплообменники по способу передачи теплоты подразделяют на поверхностные, где отсутствует непосредственный контакт теплоносителей, а передача тепла происходит через твёрдую стенку, и смесительные где теплоносители контактируют непосредственно. Поверхностные теплообменники в свою очередь подразделяются на рекуперативные и регенеративные, в зависимости от одновременного или поочерёдного контакта теплоносителей с разделяющей их стенкой.

Рекуперативными называют теплообменники, в которых теплообмен между теплоносителями происходит через разделяющую их стенку. Они могут работать как в непрерывном, так и в периодических режимах. Большинство рекуперативных теплообменников работают в непрерывном режиме.

Кожухотрубчатые теплообменники получили наибольшее распространение, они предназначены для работы с теплоносителями жидкость-жидкость, газ-газ и представляют собой аппараты выполняемые из пучков труб. По количеству ходов все кожухотрубчатые теплообменники делят на: одна, двух, четырёх и шестиходовые.

Пластинчатые теплообменники имеют плоские параллельные поверхности теплообмена, которые образуют каналы для прохода теплоносителей. Такие теплообменники применяют для теплоносителей с примерно равными коэффициентами теплоотдачи. Для интенсивности процесса теплообмена и для увеличения площади поверхности теплообмена пластинам придают различный профиль.

Выполнение курсовой работы по курсу «Тепломассообмен» позволит закрепить знания по основным разделам дисциплины.

Курсовая работа состоит из расчётной части и графической и выполняется по следующим разделам:

1. Тепловой конструктивный расчёт рекуперативного кожухотрубчатого теплообменника.

2. Тепловой расчёт пластинчатого теплообменника.


1.  ТЕПЛОВОЙ КОНСТРУКТИВНЫЙ РАСЧЕТ РЕКУПЕРАТИВНОГО КОЖУХОТРУБЧАТОГО ТЕПЛООБМЕННИКА

Кожухотрубчатые теплообменные аппараты могут использоваться в качестве теплообменников, холодильников, конденсаторов и испарителей. Теплообменники предназначены для нагрева и охлаждения, а холодильники для охлаждения (водой или другим нетоксичным, непожаро- и невзрывоопасным хладагентом) жидких и газообразных сред. Кожухотрубчатые теплообменники могут быть следующих типов: ТН – теплообменники с неподвижными трубными решетками; ТК – теплообменники с температурными компенсаторами на кожухе и жестко закрепленными трубными решетками; ТП – теплообменники с плавающей головкой, жестким кожухом и жестко закрепленной трубной решеткой; ТУ – теплообменники с U-образными трубками, жестким кожухом и жестко закрепленной трубной решеткой; ТС – теплообменники с сальником на плавающей головке, жестким кожухом и жестко закрепленной трубной решеткой (рисунок 1, Приложение 1).

Наибольшая допускаемая разность температур кожуха и труб для аппаратов типа Н может составлять 20–60 ºС, в зависимости от материала кожуха и труб, давления в кожухе и диаметра аппарата.

Теплообменники и холодильники могут устанавливаться горизонтально или вертикально, быть одно-, двух-, четырех- и шестиходовыми по трубному пространству. Трубы, кожух и другие элементы конструкции могут быть изготовлены из углеродистой или нержавеющей стали, а трубы холодильников – из латуни. Распределительные камеры и крышки выполняют из углеродистой стали.

Данный расчет проводится для определения площади поверхности теплообмена стандартного водо-водяного рекуперативного теплообменника, в котором греющая вода поступает в трубы, нагреваемая вода – в межтрубное пространство.

Задание: Выполнить тепловой конструктивный расчет водоводяного рекуперативного подогревателя производительностью Q. Температура греющего теплоносителя на входе в аппарат  ºС. Температура нагреваемого теплоносителя на входе в теплообменник  ºС, изменение температуры нагреваемого теплоносителя в аппарате  К. Массовый расход греющего теплоносителя – кг/с, нагреваемого теплоносителя – кг/с. Поверхность нагрева выполнена из труб диаметром  мм.

Трубы в трубной решетке расположены по вершинам равносторонних треугольников. L – длина труб, предварительно принимается равной 3,0 м. Схема движения теплоносителей – противоток. Материал труб теплообменного аппарата выбирается в соответствии с вариантом. Потерями тепла в окружающую среду пренебречь.

1.1 Расчет количества передаваемого тепла

Уравнение теплового баланса для теплообменного аппарата имеет вид:

                                                                                              (1.1)

где  – количество теплоты в единицу времени, отданное греющим теплоносителем, Вт;

 – количество теплоты в единицу времени, воспринятое нагреваемым теплоносителем, Вт;

 – потери теплоты в окружающую среду, Вт.

Так как  по условию, то количество передаваемого тепла в единицу времени через поверхность нагрева аппарата, Вт, ([7]):


                                                                                              (1.2)

где  и – средние удельные массовые теплоёмкости греющего и агреваемого теплоносителей, в интервале изменения температур от  до  и от  до , соответственно, кДж/кг ×К.

Температура нагреваемого теплоносителя на выходе из теплообменника, ºС, ([7])

                                                                                              (1,3)

 (ºС)

Средняя температура нагреваемого теплоносителя, ºС:

                                                                                    (1.4)

 (ºС)

По температуре  определяется значения  методом линейной интерполяции ([3])

 (кДж/кг ×К)

Количество теплоты в единицу времени, воспринятое нагреваемым теплоносителем, Вт, ([7]):

                                                                           (1.5)

 (кВт)

Методом линейной интерполяции определяется средняя удельная массовая теплоёмкость  греющего теплоносителя при температуре

 (кДж/кг ×К)

Для условия, , определяется температура греющего теплоносителя на выходе из теплообменника, ºС:

,                                                                                   (1.6)

 (ºС)

Средняя температура греющего теплоносителя, ºС, ([7]):

                                                                                              (1.7)

 (ºС)

По температуре  определяется значения . Уточняется количество теплоты, отданное греющим теплоносителем в единицу времени, Вт, ([7]):

                                                                                    (1.8)

 (кВт).

Величина относительной погрешности, %

, %                                                                      (1.9)

 %.

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости