рефераты рефераты
Главная страница > Курсовая работа: Стальной каркас одноэтажного производственного здания  
Курсовая работа: Стальной каркас одноэтажного производственного здания
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Стальной каркас одноэтажного производственного здания

g=Bф*Sgкр.

g=6*2.87=17.21 кН/м.

Реакция стропильной фермы:

Vg=g*L/2.

Vg=17.21*24/2=206.50 кН.

Сосредоточенная сила на верхнем конце колонны:

V’g=Vg*B/Bф.

V’g=206.50*12/6=412.99 кН.

 

2.2.2 Снеговая нагрузка

Принимаем равномерное распределение снега по всему покрытию.

Погонная расчетная снеговая нагрузка на стропильную ферму, кН/м:

S=sg*Bф,

где sg – расчетное значение веса снегового покрова на 1 м2 горизонтальной поверхности земли, принимаемое в зависимости от снегового района (г. Пенза – III снеговой район, sg=1.8 кН/м2).

S=1.8*6=10.8 кН/м.

Реакция фермы от снеговой нагрузки:

Vs=S*L/2.

Vs=10.8*24/2=129.6 кН.

Сосредоточенная сила на колонну от снеговой нагрузки:

Vs’=Vs*B/Bф.

Vs=129.6*12/6=259.2 кН.

 

2.2.3 Нагрузки от мостовых кранов

При расчете однопролетного промышленного здания крановую нагрузку учитываем только от двух сближенных кранов наибольшей грузоподъемности с учетом сочетания крановых нагрузок nc=0.95 (тяжелый режим работы мостовых кранов).

Вертикальное давление кранов определяем по линиям влияния опорной реакции общей опоры двух соседних подкрановых балок.

Рисунок 9. Схема к расчету нагрузки от мостовых кранов

Расчетные давления на колонну:

Dmax=nc*γf*Pmax*Syi+Gп.к,

Dmin=nc*γf*Pmin*Syi+Gп.к,

где γf =1.1– коэффициент надежности по нагрузке для мостовых кранов;

Pmax – максимальное давление колеса крана:

Pmax=0,5*(P1н+P2н);

Pmax=0,5*(310+320)=315 кН;

Pmin – минимальное давление колеса крана, кН:

Pmin=[(Q+Gk)/n0]-Pmax;

где Q=1600 кН – грузоподъемность крана;

Gk=1617 кН – вес крана с тележкой;

n0=8 – количество колес на одной стороне моста крана;

Pmin=[(1600+1617)/8]-315=87 кН;

Syi=9 – сумма ординат линий влияния;

Gп.к=B*G=12*6=72 кН – вес подкрановых конструкций.

Dmax=0.95*1.1*315*9+72=3034.6 кН;

Dmin=0.95*1.1*87*9+72=891.4 кН.

Подкрановые балки устанавливают с эксцентриситетом e1 по отношению оси нижней части колонны, поэтому от вертикальных давлений возникают сосредоточенные изгибающие моменты:

Mmax=e1*Dmax,

Mmin=e1*Dmin,

где e1=0.5*bн=0.5*1.75=0.875 м.

Mmax=0.875*3034.6=2655.3 кН*м;

Mmin=0.875*891.4=780.0 кН*м.

Расчетное горизонтальное давление от торможения тележки с грузом:

T=nc*γf*0.5*f*(Q+GT)*Σyi/n0,

где f=0.1 – коэффициент трения;

GT=549 кН – вес тележки.

T=0.95*1.1*0.5*0.1*(1600+549)*9/8=126.3 кН.

 

2.2.4 Ветровая нагрузка

Для одноэтажных производственных зданий учитывается только статическая составляющая ветровой нагрузки. Она вызывает активное давление – с наветренной стороны и отсос – с противоположной стороны.

Нормативное значение давления ветра на вертикальную поверхность продольной стены зависит от района строительства, типа местности и высоты от уровня земли. Давление ветра на произвольной отметке от уровня земли определяется по формуле:

ωm=ω0*k*c кН/м2,

где ω0=0.3 кН/м2 – нормативная скорость напора ветра на уровне 10 м (г. Пенза – II ветровой район);

k – коэффициент, учитывающий изменение ветрового давления в зависимости от высоты и типа местности (примем тип местности A);

с – аэродинамический коэффициент учета конфигурации здания: для активного давления с=0.8, для отсоса – с’=0.75*с=0.6.

Для определения ветровой нагрузки рассматривается расчетный блок шириной В (часть продольной стены). При этом давление ветра до низа ригеля прикладывается к стойкам рамы в виде распределенных нагрузок, а давление от шатровой части – в виде сосредоточенной силы, приложенной к верхушкам стоек.

С целью упрощения расчетов фактическая эпюра давления ветра до отметки низа ригеля (по высоте Н) заменяется эквивалентной равномерно распределенной нагрузкой:

ωэкв=ω0*kэкв кН/м2,

где kэкв=1.122 – приращение напора за счет увеличения давления по высоте при отметке низа ригеля рамы H0=23.4 м.

ωэкв=0.3*1.122=0.34 кН/м2.

Активная погонная нагрузка на колонну:

ωв=ωэкв*с*γf*Вфахв,

где Вфахв=В=12 м – шаг колонн,

γf =1.4 – коэффициент надежности по ветровой нагрузке.

ωв=0.34*0.8*1.4*12=4.53 кН/м.

Погонная нагрузка на колонну от отсоса:

ωв’=ωэкв*с’*γf*Вфахв=0.75*ωв,

ωв’=0.75*4.53=3.39 кН/м.

Для определения расчетной сосредоточенной силы для активного давления W сравним положение отметки низа фермы H0=23.4 м и отметки верха кровли Hкр=H0+Hш=H0+hоп+hпп+hкр=23.4+3.15+0.3+0.03=26.88 м (Hш – высота шатра, hоп – высота фермы у опоры, hпп – высота плиты покрытия, hкр – высота кровли) с отметкой H20=20 м:

H20=20 м<H0=23.4 м<Hкр=26.88 м.

Расчетная сосредоточенная сила для активного давления (случай при H0>H20 или при H20>Hкр):

W=(ωm23.4+ωm26.88)*γf*В*Нш/2,

где γf =1.4 – коэффициент надежности по ветровой нагрузке,

ωm23.4=ω0*k23.4*c=0.3*1.292*0.8=0.310 кН/м2 – давление ветра на отметке низа фермы H0=23.4 м,

ωm26.88=ω0*k26.88*c=0.3*1.338*0.8=0.321 кН/м2 – давление ветра на отметке верха кровли Hкр=26.88 м,

Нш=Hкр-H0=26.88-23.4=3.48 м – высота шатра.

W=(0.310+0.321)*1.4*12*3.48/2=18.45 кН.

Расчетная сосредоточенная сила для отсоса:

W’=0.75*W=0.75*18.45=13.84 кН.

 

2.3 Статический расчет рамы с жесткими узлами

 

2.3.1 Расчетная схема рамы

Определим расчетные усилия в характерных сечениях элементов рамы (1-1, 2-2, 3-3, 4-4 рисунок 10), которые необходимы для подбора сечения элементов и для расчета сопряжений и узлов.

Принимаем: e=0.5*(bн-bв)=0.5*(1750-700)=525 мм.

На данном этапе сечения стоек и ригеля неизвестны, поэтому зададимся отношением жесткостей элементов рамы из условий (здесь q=gкрн+sgн=2.56+1.8*0,7=3.82 кН/м2):

=0.10,

,

=0.63,

,

примем IB/IH=0.1, IP/IH=2, тогда IB=1, IH=10, IP=20.

Расчетная схема изображена на рисунке 10.

Рисунок 10. Расчетная схема поперечной рамы

2.3.2 Учет пространственной работы каркаса

Коэффициент пространственной работы каркаса aпр зависит от типа кровли. При жестких кровлях из ж/б плит с замоноличиванием швов aпр находится по формуле:

,

где mр – число рам в блоке,

β=2*n0/Σyi=2*8/9=1.78 – коэффициент, учитывающий разгружающее влияние смежных рам по отношению к рассматриваемой (2*n0 – общее число колес у двух сближенных кранов на одном пути).

αпр=1.78*[1/11+962/(2*(1192+962+722+482+242))]=0.42.

 

Рисунок 11. Схема к учету пространственной работы каркаса

 

2.3.3 Определение усилий в сечениях рамы

Статический расчет рамы произведен на ЭВМ с помощью программы «Statik».

№ загружений в программе:

1 – G (постоянная),

2 – P(S) (снеговая),

3 – Mmax (момент от крана у левой колонны),

4 – Mmin (момент от крана у правой колонны),

5 – T (торможение тележки крана у левой колонны слева направо),

6 – T (торможение тележки крана у левой колонны справа налево),

7 – T (торможение тележки крана у правой колонны слева направо),

8 – T (торможение тележки крана у правой колонны справа налево),

9 – W (ветер слева направо),

10 – W (ветер справа налево).

Определим неизвестные величины для расчета программы:

K=1, так как сопряжение ригеля с колонной жесткое,

N=0,9*Sgнкр/Sgкр=0,9*2.56/2.87=0.80,

S=B/Bф=2,

NB=0, NH=0 – нагрузка от стеновых панелей.

Исходные данные для выполнения расчета занесены в таблицу 2.

Таблица 2

Исходные данные для расчета программы «Statik»

Величина L H H2 E АПР K N S
Размерность м м м м - - - м - - - -
Значение 24 24.4 5.23 7.2 10 1 20 0.525 0.42 1 0.80 2
Величина Dmax Dmin Mmax Mmin G P(S) T GEK(ωв) W GEK1 (ωв’) W1 NB NH
Размерность кН кН кН*м кН*м кН/м кН/м кН кН/м кН кН/м кН кН кН
Значение 3034.6 891.4 2655.3 780.0 17.21 10.8 126.3 4.53 18.45 3.39 13.84 0 0

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9

рефераты
Новости