рефераты рефераты
Главная страница > Курсовая работа: Розробка конструкції та техніко-економічне обґрунтування таймера-регулятора потужності  
Курсовая работа: Розробка конструкції та техніко-економічне обґрунтування таймера-регулятора потужності
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Розробка конструкції та техніко-економічне обґрунтування таймера-регулятора потужності

Одним з варіантів електрохімічного процесу є так званий «тентинг-процес». В цьому варіанті заготовка друкованої плати, в якій просвердлені отвори, металізується повністю хімічним, а потім - гальванічним мідненням з товщиною шару 25-30 мкм. Далі за допомогою сухого плівкового фоторезисту завтовшки 40-60 мкм і фотошаблону-негативу виходить захисний малюнок з плівки фоторезисту, що перекриває всі отвори і захищаючі їх від попадання травильного розчину. Як і в звичному хімічному методі, провідний малюнок тут утворюється після труїння міді. Провідники, контактні майданчики і стінки отворів лудяться сплавом ПОС гарячим способом по методу «Льовельер» або ППВ (покриття припоєм з вигладжуванням). Тентинг-процес дає добрі результати при виготовленні багатошарової плати з внутрішніми переходами з діелектрика, обидві сторони якого покрито 5- або 35-мікронною мідною фольгою.

Основними операціями технологічного процесу є: свердлення отворів; анодування в 20 % розчині H2SO4 при Ia=1,5 А/дм2 протягом двох годин для отримання оксидної плівки, що підвищує електроізоляційні властивості поверхні; нанесення ізоляційного шару; хімічне міднення всієї поверхні із «затяжним» гальванічним мідненням.

Подальші операції виконуються в описаній вище послідовності. Як ізоляційний шар краще використовувати порошкові фарби ПЕП-219 з  оплавленням кожного шару при температурі 180 оС.

Підготовка поверхні перед хімічним мідненням здійснюється таким чином. Після знежирення в розчині тринатрійфосфату проводиться обробка в ацетоні, розбавленим водою відносно 2:1, протягом 10 хв для підвищення гідрофільності поверхні, а потім затруювання в розчині наступного складу: хромовий ангідрид (30 г/л), сірчана кислота (650 мл/л) при температурі 50-60 °С із подальшою промивкою і нейтралізацією.

З метою забезпечення необхідної міцності зчеплення провідників з підложкою передбачено створення мікрошорсткості поверхні за допомогою того, що труїння в сірчанохромовій суміші. Ця операція викликає серйозні ускладнення у виробництві, пов'язані з токсичністю хромових з'єднань і необхідністю вживання заходів по знешкодженню відходів.

Оброблюваний діелектрик у вигляді плівкового матеріалу поміщається між алюмінієвою пластиною і епоксисклотканиною, по зовнішній поверхні якої виконує поворотно-поступальна рухи електрод з чотирьох циліндрів.

На рухомий електрод і алюмінієву пластину подається напруга від високочастотного генератора (20-40 кГц) величиною 1,4 кВ. Густина струму, при якій виникають коронні розряди, складає 1,5 мА/см2. В результаті дії коротких розрядів поверхня стає мікрошорсткою.

Технологічний процес електрохімічної металізації заготівок при використовуванні різних плівкових матеріалів складається з операцій: очищення (звичне), сушка, обробка коротким розрядом, активація, обробка в розчині «прискорювача», хімічного міднення і гальванічного міднення.

4.2.4 Комбінований спосіб

Залежно від методу нанесення захисного малюнка провідників при витравленні міді комбінований спосіб може здійснюватися в двох варіантах: негативному, коли захистом від витравлення служать фарба або фоторезист, і позитивному, коли захисним шаром служить металеве покриття (металорезист). Назви ці способи одержали від фотошаблону, що використовується при створенні захисного рельєфу: в першому випадку при експонуванні малюнка використовується негатив друкарської схеми, в другому - позитив. Комбінований метод виготовлення друкарської плати застосовується рядом підприємств з дрібносерійним виробництвом.

Негативний комбінований спосіб має наступні недоліки:

- При свердленні отворів на виході свердла утворюються заусенці і створюються напруження, направлені на відрив контактного майданчика. Для збереження контактного майданчика в конструкції плат передбачається збільшення діаметру контактного майданчика (ширини поясочка) на 0,6-0,8 мм. Ця вимога приводить до зниження густини монтажу.

- У результаті витравлення міді на початку процесу діелектрик залишається “голим” для дії агресивних гальванічних розчинів і активних флюсів (HCI). З цієї причини опір ізоляції готової плати на порядок нижче, ніж при позитивному процесі.

- У зв'язку з тим, що гальванічна металізація здійснюється в пристосуваннях, що закривають отвори з однією сторони, товщина шару металу в отворі дуже нерівномірна; часто мають місце випадки відшаровування металу при перепаюванні деталей.

- Процес передбачає багато ручних операцій.

- Операция покриття сплавом РbSn особливо токсична через виділення продуктів, що містять свинець і кадмій.

Недоліком позитивного комбінованого способу є нестійка дія фоторезистів на основі полівінилового спирту при виконанні двократної гальванічної обробки, що створює великі труднощі у виробництві (зачистка і т. п.).

До недоліків обох способів можна віднести наступні:

- Розрив технологічного процесу через застосування ручних операцій лакування, що вимагає високої кваліфікації маляра.

- Свердлення через лакову плівку погіршує стійкість свердел.

- Рідкі фоторезисти створюють захисний малюнок товщиною не більше 12 мкм, тоді як гальванічне осадження міді і покриття проводиться на товщину від 30 до 60 мкм (і більше). В результаті цього метал наростає за межі малюнка провідного шару і це «розростання» доводиться зрізати скальпелем, що пов'язане з великими витратами часу і застосуванням ручнї роботи.

Негативний спосіб легше освоюється через знижені вимоги до стійкості фоторезисту і можливості труїння в будь-яких розчинах (у тому числі Fе2CI3), позитивний - забезпечує більш високу густину монтажу і кращі діелектричні властивості плати, він дозволяє також здійснювати автоматизацію окремих операцій, наприклад гальванічне осадження.

Обидва способи характеризуються значною трудомісткістю, оскільки в технологічних процесах використовується багато ручних операцій, тому вони можуть використовуватися лише в умовах дослідного і дрібносерійного виробництва. Найперспективнішим є позитивний спосіб, здійснюваний по так званому базовому технологічному процесу, структура якого аналогічна вищевикладеному напіваддитивному процесу. До основних операцій процесу можна віднести нарізка заготівок і свердлення

отворів, що підлягають металізації; підготовчі операції; хімічне міднення; потовщення шару міді до 5-7 мкм гальванічним мідненням; нанесення захисного рельєфу на пробільні місця; гальванічне міднення; гальванічне покриття сплавом олово-свинець; видалення захисного рельєфу; труїння; обрізання по контуру, оплавлення покриття олово - свинець; маркування, консервацію, упаковку.

Процес забезпечує отримання зазорів між провідниками і ширину провідників до 0,2 мм.

Підготовчі операції перед хімічним мідненням заготівок плат з просвердленими отворами можуть здійснюватися в двох варіантах:

1) Механічна зачистка з метою видалення заусенців і дефектів на поверхні фольги в поєднанні з хімічними операціями. Послідовнічсть виконання технологічних операцій є такою: механічна зачистка фольги, хімічне знежирення, промивка в гарячій і холодній воді, затруювання, промивка в холодній воді, активація, промивка в уловлювачах, промивка в холодній воді, обробка в розчині «Прискорювач», промивка в холодній воді.

2) Електролітичне полірування. Послідовність операцій: хімічне знежирення, промивка в гарячій і холодній воді, активація, промивка в уловлювачах, промивка в холодній воді, електролітичне полірування, промивка в холодній воді.

Використовуючи комбінований метод, можна виготовляти плати з підвищеною густиною монтажу. В цьому випадку початковим матеріалом служить текстоліт, фольгованний дуже тонкою мідною фольгою (товщина фольги 5 мкм). Мідна фольга захищається від можливих пошкоджень, при зберіганні, транспортуванні і свердленні отворів мідним або алюмінієвим листовим протектором завтовшки 50-75 мкм. Матеріал з мідним протектором одержав назву «Слофадіт», а з алюмінієвим протектором - СТПА.

Після свердлення отворів в заготовці і операції хімічного міднення протектор відділяється від поверхні фольги і укладається в окрему тару для подальшої здачі підприємствам кольорової металургії як вторинна сировина. Заготовка піддається гальванічній металізації («затягуванню») і іншим операціям приведеним вище.

Тривалість операції труїння зменшується в 5 разів, оскільки товщина шаруючої міді, що підлягає витравленню, складає 10-12 мкм замість 45-50 мкм у разі застосування звичайних фольгованих діелектриків. В результаті цього ефект бічного затруювання практично виключається і досягається можливість отримання вузьких провідників шириною до 0,15 мм і таких же зазорів між ними, що характерно для плат, що виготовляються по напіваддитивній технології.

Технологічний процес виготовлення двобічної друкованної плати комбінованим методом з матеріалу типа «Слофадіт» забезпечує підвищену густину монтажу (клас 3 згідно з ГОСТ 23751-79), що дозволяє у багатьох випадках багатошарові плати в 6-8 шарів замінити на двосторонні.

Широке вживання мікрозбірок, інтегральних схем і виробів сучасної напівпровідникової техніки привело до того, що при монтажі їх на друкованну плату різко зросла комутація між ними і з'явилась необхідність розміщення провідників в різних, ізольованих один від одного шарах багатошарової плати. Багатошарові з'єднання здійснюються через металізовані скрізні отвори, тому і метод виготовлення БДП одержав назву «метод наскрізної металізації». Інші способи міжслойового з'єднання застосовуються дуже рідко і тому не передбачені нормативно-технічною документацією .

На заготовках з тонких фольгованих діелектриків, наприклад мазкий СТФ-1 або СТФ-2, хімічним методом одержують провідний малюнок,

використовуючи рідкі або сухі плівкові фоторезисти. Як витравлювачі можуть бути використані різні по типу розчини: кислотні або лужні. При виборі розчину слід зупинитися на тому складі, який прийнятий для основного процесу. Після витравлення міді спостерігається небажана деформація стиснення діелектрика, обумовлена внутрішніми напруженнями, що проявляють свою дію після видалення частини мідної фольги. Величина цих деформацій залежить від характеру провідного малюнка і вона мінімальна у разі вживання діелектриків, фольгованих міддю з двох сторін.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

рефераты
Новости