рефераты рефераты
Главная страница > Дипломная работа: Применение магнетронных генераторов большей мощности в радиолокационных системах  
Дипломная работа: Применение магнетронных генераторов большей мощности в радиолокационных системах
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Применение магнетронных генераторов большей мощности в радиолокационных системах

Опыт в основном подтверждает ход зависимости эл = f(B) при , представленной на рисунке 1.4, а. Однако в случае разнорезонаторных магнетронов в некотором интервале значений магнитной индукции наблюдается "провал" электронного к. п. д., как показано качественно на рисунке 1.4, б. Исследования показали, что в центре "провала" произведение магнитной индукции, выраженной в тесла, на длину волны в сантиметрах имеет для всех магнетронов одинаковую величину, равную приблизительно 1,2 тл.см.

"Провал" электронного к. п. д. в разнорезонаторных магнетронах можно качественно объяснить с точки зрения циклотронного резонанса, возникающего при условии . В пространстве взаимодействия разнорезонаторного магнетрона, кроме поля -вида, имеется составляющая поля п = 0. При приблизительном совпадении частоты генерируемых колебаний и циклотронной частоты характер движения электронов может измениться. Большую роль играет тот факт, что поле нулевой составляющей значительно медленнее убывает при удалении от анода, чем поле -вида .

Форма спиц и их взаимодействие с полем -вида ухудшаются.

Обычно разнорезонаторные магнетроны эксплуатируются при более низком магнитном поле, чем поле, соответствующее центру "провала". Перейти в область больших индукций за "провалом" практически не удается из-за трудностей получения очень сильных магнитных полей.

Некоторое влияние на величину электронного к. п. д. магнетрона оказывает разделение видов колебаний. По-видимому, условия формирования спиц ухудшаются при наличии "загрязняющих" полей в пространстве взаимодействия. Электронный к. п. д. магнетрона может снизиться также за счет влияния поля связок около концов анодного блока. Это поле, не имеющее азимутальных вариаций, оказывает примерно такое же воздействие на пространственный заряд в магнетроне, какое имеет поле нулевой составляющей в магнетронах разнорезонаторной конструкции. Для устранения подобных эффектов связки обычно экранируются путем расположения их в кольцевых канавках, выточенных на торцах анодного блока.

Диаметр катода также влияет на величину электронного к. п. д. Для повышения величины желательно уменьшать отношение . Однако при малом - не могут полностью удовлетворяться условия синхронизма между электронами и полем, так как напряженность постоянного электрического поля имеет наибольшую величину у катода и уменьшается по направлению к аноду. Чтобы повысить электронный к. п. д. магнетрона, обычно рекомендуется выбирать наименьшую возможную величину, при которой получается достаточная устойчивость видов колебаний.

Для оценки оптимального отношения с предложены различные эмпирические соотношения, например:

  (1.14)

где N — число резонаторов. Отметим, однако, что зависимость эл = f() не очень критична и допускает заметные отклонения от величины, рассчитанной по уравнениям (1.14).

В заключение напомним, что полный к. п. д. магнетрона определяется с учетом к. п. д. резонаторной системы:

 (1.15)

Как известно, величина  в общем случае связана с собственной, нагруженной и внешней добротностями колебательной системы соотношением

 (1.16)

Величина внешней добротности выбирается с учетом допустимого затягивания частоты магнетрона и обычно не бывает ниже 100—200. Собственную добротность  желательно иметь как можно выше. Типичная величина в сантиметровом диапазоне имеет порядок 1000. Таким образом, по (1.16) к. п. д. резонаторной системы может составлять от 90—95% до 60—65% на наиболее коротких волнах. Типичные значения полного к. п. д. магнетронов составляют от 60—70% на дециметровых волнах до 20—30% на волнах длиной порядка 1 см.

1.4 Рабочие и нагрузочные характеристики магнетронов

При рассмотрении эксплуатационных свойств магнетронов используют две группы характеристик. К первой относятся вольтамперные характеристики, снятые при неизменной нагрузке, соответствующей режиму согласования выходного устройства магнетрона. Параметрами при снятии характеристик  являются магнитная индукция В, генерируемая мощность Рген, частота генерируемых колебаний  и полный к. п. д. (). Ко второй группе относятся зависимости генерируемой мощности и частоты от полного сопротивления (полной проводимости) нагрузки.

Вольтамперные характеристики магнетрона, снятые при условиях В = const, Рген = const,  = const или  = const, носят название рабочих характеристик. Эти характеристики принято строить в прямоугольной системе координат, по вертикальной оси которой откладывается постоянное анодное напряжение, а по горизонтальной оси — постоянный анодный ток магнетрона.

Нагрузочные характеристики  и  при , как и для других типов автогенераторов СВЧ, удобно строить на комплексной плоскости полного сопротивления нагрузки в полярной системе координат.

Расчета нагрузочных и рабочих характеристик магнетронов обычно не производят. Тем не менее, форма этих характеристик непосредственно обусловливается физическими процессами, происходящими в магнетроне, и может быть качественно получена из простых соображений.

Рассмотрим идеализированные рабочие характеристики, которые можно предположить, если исходить из описанных свойств магнетронов типа бегущей волны.

Семейство кривых постоянной генерируемой мощности Рген = const можно получить из следующих соображений. Генерируемая мощность магнетрона, как и всякого электронного прибора, связана с постоянным анодным напряжением, постоянным анодным током и к. п. д. соотношением . Его можно переписать в виде

.

Отсюда следует, что если бы к. п. д. магнетрона оставался неизменным и не зависел от , то при Рген = const вольтамперные-характеристики  имели бы вид равнобочных гипербол. Однако с ростом  электронный к. п. д. несколько уменьшается, так как при этом повышается амплитуда СВЧ колебаний и увеличивается доля мощности, рассеиваемой на аноде в конце последнего витка циклоидальной траектории. Поскольку к. п. д. резонаторной системы, естественно, остается неизменным, то с увеличением тока линии постоянной мощности отклоняются от гипербол и несколько поднимаются, как показано качественно на рис. 1.5.

Чем больше генерируемая мощность, тем выше и правее должны располагаться кривые Рген = const.


Рисунок 1.5 - Идеализированные рабочие характеристики магнетронного генератора

Таким образом, вольтамперные характеристики магнетрона при В = const имеют вид семейства кривых с круто возрастающим начальным участком, показанным пунктиром на рис. 1.5, б. Далее следуют излом и почти горизонтальный участок, имеющий небольшой наклон к оси абсцисс и характеризующий работу магнетрона в генераторном режиме.

Типичные рабочие характеристики импульсного магнетрона 10-см диапазона приведены на рис. 1.6. Кроме кривых Рген = const и В = const, на этом графике показаны семейства кривых постоянного к. п. д. и постоянной генерируемой частоты. Рабочая точка магнетрона лежит в верхнем правом углу рассматриваемого графика.

Из рисунка 1.6 видно, что опытные кривые хорошо согласуются с обсуждавшимися ранее идеализированными характеристиками. Такое совпадение может рассматриваться как подтверждение правильности сделанных основных качественных предположений о механизме работы магнетрона.

По своему характеру нагрузочные характеристики магнетронов сходны с нагрузочными характеристиками других автогенераторов СВЧ с резонансной колебательной системой, например, отражательных клистронов. Такое сходство обусловлено тем, что затягивание частоты под действием внешней нагрузки обычно значительно меньше разделения видов.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

рефераты
Новости