рефераты рефераты
Главная страница > Дипломная работа: Блочно-симметричные модели и методы проектирования систем обработки данных  
Дипломная работа: Блочно-симметричные модели и методы проектирования систем обработки данных
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Блочно-симметричные модели и методы проектирования систем обработки данных

Приведем краткий обзор моделей и методов задач дискретного программирования (ДП), используемых в процессе проектирования систем обработки данных.

Определим задачу дискретного программирования следующим образом. [83]

Задачей дискретного программирование (ДП) будем называть задачу отыскания экстремума (max, min) скалярной функции, заданной на дискретном (несвязном) множестве, т.е. такую задачу математического программирования (МП), у которой на все или на часть переменных, определяющих область допустимых решений, наложено требование дискретности. Запишем задачу МП в виде:

,    (1.2.1)

где  - -мерный вектор;  - скалярный функция;  -некоторое множество в , .

Если  - конечное (или счетное) множество или декартово произведение конечного (счетного) множества на множество мощности континиума, то будет иметь место задача ДП. В этом случае условие принадлежности  некоторому множеству может быть записано в виде:

, ;

, ; ; .  (1.2.2)

При  - задача частично дискретного программирования.

Если - множество всех целочисленных векторов, то при  - имеем задачу целочисленного программирования (ЦП). А при  - задачу частичного целочисленного программирования (ЧЦП).

В наибольшей степени изучены методы решения задач целочисленного линейного программирования (ЦЛП):

;(1.2.3)

Здесь  - множество всех неотрицательных целых чисел, частный случай задач ЦЛП  задачи с булевыми переменными, где в (1.2.3):

, ;

В ряде задач ЦП требование целочисленности накладывается и на целевую функцию.

При постановке и решении задач дискретного программирования традиционно можно выделить следующие классы: задачи с неделимостями, экстремальные комбинаторные задачи, задачи с неординарной разрывной целевой функцией, задачи на неклассических областях, многоэкстремальные задачи, дискретные задачи, связанные с нахождением экстремумов на конечных множествах.

Прикладные задачи этих классов в свою очередь могут иметь различные математические постановки и методы их реализации. Поэтому развитие дискретного программирования осуществляется по следующей схеме: постановка прикладной задачи, разработка математической модели дискретного программирования, разработка метода (алгоритма) решения задачи.

Обычно эффективное решение задачи тесно связанно с математической моделью задачи, со структурой модели и ее особенностями.

Рассмотрим некоторые математические модели дискретного программирования и методы их решения.

Модели задач ДП. Классическим примером моделей этого класса являются модели целочисленного линейного программирования, в которых переменными являются неделимые величины. Модели этого класса в свою очередь генерировали различные варианты постановки прикладных задач и определены как модели с неделимостями.

В процессе развития теории дискретного программирования выделился класс комбинаторных моделей. [83]

В этих моделях необходимо определить экстремум целочисленной функции, заданной на конечном множестве элементов, либо элементы этого конечного множества, доставляющих экстремум целевой функции.

Одним из типичных примеров комбинаторной модели является задача о коммивояжере. [84]

В данной задаче имеется кратчайший замкнутый путь, проходящий по одному разу через все города, при условии, что имеется n городов и задана матрица расстояний между ними.

В комбинаторной постановке необходимо определить такую перестановку, которая минимизирует величину целевой функции.

Постановка различных комбинаторных задач может часто формулироваться в виде модели с булевыми переменными, которые принимают только два значения 0 или 1.

К булевым моделям сводятся большое число прикладных задач, что свидетельствует о перспективности моделей этого класса. [85]

 В постановках ряда прикладных задач имеются некоторые особенности, касающихся целевой функции либо области ограничений. К примеру, необходимо определить, экстремум неординарной разрывной функции на выпуклом многограннике вида

 где

Эти модели образуют класс моделей с неоднородной разрывной целевой функцией.

Модели нахождения экстремума на области, задаваемой не только линейными неравенствам (ограничениями) но и логическими условиями. Такие области оказываются невыпуклыми либо несвязными. Эти задачи образуют модели на не классических областях. [84]

Особый интерес исследователей вызывают многоэкстремальные модели, в которых необходимо определить оптимальные значения более одной целевой функции при наличии (либо отсутствии) систем ограничений. Как правило, модели этого класса сложны в вычислительном отношении. Вместе с тем, постановки целого ряда прикладных задач сводятся к моделям данного класса. Решение указанных задач является актуальным. [103, 105, 107]

Одной из первоначальных моделей, безусловно, является модель транспортной задачи с которой связаны многие исследования в области дискретного программирования. Эти исследования привели к моделям потоков в сетях и другим модификациям указанных задач.

Следует отметить, что разработка моделей тесно связана с методом ее реализации, и наоборот разработка новых методов, в свою очередь, приводит к появлению новых моделей для постановки прикладных задач.

Методы решения задач дискретного программирования (ДП). В задачах ДП методы их решения зачастую связаны с их математической постановкой и особенностями. Имеется большое число методов для решения этих задач. В этой связи целесообразно выделить следующие методы решения задач ДП: точные и приближенные. Среди точных методов наиболее распространены комбинаторные методы и методы отсечения.

Типичным примером комбинаторных методов является метод ветвей и границ [115]. Суть данного метода заключается в направленном переборе допустимых решений на основе вычисления оценок. Основное этапы подхода заключается в следующем:

1.  Исходное множество решений  разбиваются не подмножества  (процесс ветвления);

2.  Для каждого из подмножеств  вычисляется значения оценок (нижние или верхние границы);

3.  На основе выбранного значения оценок вычисляются допустимые решения;

4.  Итерационный процесс ветвления по заданному правилу и вычисление оценок продолжается до тех пор, пока не будет получено оптимальное решение.

Идея метода отсечений заключается в следующем. Решается исходная задача. Если полученное решение удовлетворяет условию целочисленности, то задача решена. В противном случае к ограничениям исходной задачи добавляется новое линейное ограничение. Далее решается задача с дополнительно введенным ограничением. Итеративный процесс повторяется, до тех пор, пока не будет получено целочисленное решение.

Примерами успешной реализации методов отсечения являются алгоритмы Гомори [83] .

Вместе с тем, следует отметить ограниченное использование точных методов для решения прикладных задач большой размерности. Несмотря на использование мощных вычислительных систем с большой памятью, совершенствование и развитие математического аппарата «проклятье дискретности» остается и на сегодняшний день.

Поэтому для эффективного решения прикладных задач и преодоления вычислительной сложности точных методов возникла необходимость разработки приближенных и эвристических методов, которые тесно связаны со структурой и особенностями постановки этих задач.

В отличие от точных методов, приближенные позволили решать задачи большой размерности и полученные решения удовлетворяют потребностям практики. При этом в ряде случаев появилась возможность оценить отклонение от оптимального решения либо определить ближайшие окрестности от оптимального решения.

Все это позволило использовать приближенные методы в качестве эффективного инструментария для решения практических задач.

В ряде случаев при проектировании систем обработки данных необходимо учитывать вектор критериев, которые могут противоречить друг другу. Такие постановки задач сводятся к многокритериальным задачам дискретного программирования.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21

рефераты
Новости