рефераты рефераты
Главная страница > Дипломная работа: Автоматизация технологической подготовки производства в машиностроении  
Дипломная работа: Автоматизация технологической подготовки производства в машиностроении
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Автоматизация технологической подготовки производства в машиностроении

Практически все ведущие предприятия машиностроения видят решение большинства проблем ТПП во внедрении компьютерных технологий, создании автоматизированных систем ТПП (АСТПП). На многих из них существенно повышен уровень комплексного решения проектных задач. Информация о спроектированном изделии принимается в электронном виде и является исходными данными для развертывания процессов ТПП. Компьютеризировано решение комплекса задач по проектированию и изготовлению оснастки, выполняется компьютерное моделирование технологических процессов литья, штамповки, обработки на станках с ЧПУ и др. Некоторые предприятия вплотную подошли к решению задачи автоматизации управления процессами ТПП, то есть к построению АСТПП предприятия.

Рис. 1. Структура отдела главного технолога (ОГТ)

1.3 Принципы построения АСТПП

В нашей стране АСТПП начали создаваться еще в 60-х годах двадцатого века. В разработке теоретических основ построения АСТПП и достижении практических результатов большая роль принадлежит нашим ученым: С. П. Митрофанову, В. И. Аверченкову, Г. К. Горанскому, Н. М. Капустину, Д. Д. Куликову, В. В. Павлову, Б. С. Падуну, В. Д. Цветкову и многим другим. Однако, та вычислительная база, на которой строились АСТПП до начала 90-х годов, резко отличалась от привычных для нас сегодня персональных компьютеров и рабочих станций. Это были большие (по габаритам) электронно-вычислительные машины, занимавшие целые залы, с очень малым по сегодняшним меркам быстродействием и небольшими объемами оперативной и внешней памяти, практически не дающие возможности работы в интерактивном графическом режиме и т. д.

С появлением широкодоступных персональных компьютеров и рабочих станций стали возможными: обеспечение каждого пользователя индивидуальным автоматизированным рабочим местом; организация вычислительных сетей; работа в интерактивном графическом режиме; электронный обмен данными; организация единых централизованных и распределенных баз данных; решение задач, требующих больших вычислительных ресурсов. Все эти возможности существенно повлияли на методы создания АСТПП, но, несмотря на это, многие основополагающие принципы построения АСТПП не потеряли своего значения. К ним относятся следующие принципы:

Принцип системного единства. Элементы АСТПП должны разрабатываться как части единого целого, где функционирование элементов подчинено общей цели. Кроме того, должна обеспечиваться интеграция АСТПП с автоматизированной системой управления производством (АСУП).

Принцип декомпозиции. Разделение АСТПП на составляющие (подсистемы) должно быть выполнено по наиболее слабым организационным и информационным связям. Правильная декомпозиция уменьшает сложность системы и облегчает условия ее эксплуатации.

Принцип модульности. Все компоненты АСТПП должны представлять собой логически независимые модули, которые могут использоваться как в автономном, так и в комплексном режиме.

Принцип совместимости. Все компоненты АСТПП должны обеспечивать возможность их совместного функционирования. Это требует их организационной, информационной и программной совместимости.

Принцип открытости. На этапе создания АСТПП невозможно предусмотреть все нюансы и перспективы дальнейшего развития производства. Поэтому АСТПП должна быть открыта для модернизации и включения в нее новых решений.

Принцип стандартизации. В АСТПП должно быть использовано максимальное число унифицированных, типовых и стандартных решений. Это уменьшает затраты на создание АСТПП, повышает надежность ее функционирования.

Принцип эргономичности. Так как АСТПП является человеко-машинной системой, следует предусматривать удобство работы ее пользователей (правильное разделение функций, удобство и простоту интерфейсов, учет психологических факторов и др.).

Функции АСТПП. При работе АСТПП используются последние научно-технические достижения в области методов и средств технологической подготовки производства, а также в области организации производства. Следует различать целевые и собственные функции АСТПП (рис. 2). Целевые функции соответствуют тем задачам, для решения которых создается АСТПП, а собственные функции - это те задачи, которые должны решаться в АСТПП для обеспечения целевых функций.

В своей работе АСТПП осуществляет хранение и обработку информации об изделии на протяжении всего времени его жизненного цикла, а также обеспечивает управление этой информацией. К видам информации, используемой в АСТПП, относятся:

1.Информация о деталях и сборочных единицах изделия;

2.Информация о технологических процессах изготовления изделия;


3.Информация об используемых средствах технологического оснащения;

4.Нормативно-справочная информация;

5.Планово-учетная информация.

Все эти виды информации организованы в виде единой структурированной информационной модели, доступной для работы всем специалистам ТПП. Иными словами, организовано единое информационное пространство ТПП, которое позволяет:

принимать и хранить проект изделия в электронном виде;

эффективно отслеживать текущее состояние ТПП изделия;

организовывать быстрый авторизованный просмотр всех моделей и документов;

обеспечивать оперативный обмен информацией между пользователями АСТПП;

обеспечивать информационную согласованность работы всех подсистем АСТПП;

поддерживать открытость АСТПП, удобство адаптации к меняющимся условиям производства;

обеспечивать информационный обмен с автоматизированной системой управления производством (АСУП).

При этом проектная информация поступает в информационное пространство автоматически и становится доступной всем пользователям АСТПП в соответствии с имеющимися у них правами доступа.

К базовым системам для автоматизации проектирования относятся системы класса CAD/CAM (Computer Aided Design / Computer Aided Manufacturing) и класса CAE (Computer Aided Engineering), а к базовым системам для автоматизации управления ТПП - системы класса PDM (Product Data Management).


2. Базовые системы автоматизации проектирования и управления в ТПП

2.1 CAD/CAM-системы в ТПП

В дословном переводе термин CAD/CAM (Computer Aided Design / Computer Aided Manufacturing) означает компьютерное проектирование и изготовление. Что же конкретно стоит здесь за понятиями "проектирование” и “изготовление”?

Под компьютерным проектированием в общем случае понимается разработка конструкторского проекта изделия на основе трехмерного геометрического моделирования деталей и сборочных единиц, с последующим автоматизированным формированием комплекта чертежно-конструкторской документации. Система, выполняющая компьютерное проектирование, называется CAD-системой.

Если CAD-система при проектировании решает только задачу автоматизации получения комплекта чертежно-конструкторской документации, то ее относят к классу 2D (то есть "плоских") систем. CAD-система, в которой проектирование выполняется на основе трехмерных моделей, относится к классу 3D (то есть “объемных") систем. Ниже, говоря о CAD-системах, мы будем иметь в виду ЗD-системы.

Под компьютерным изготовлением понимается автоматизированное формирование, на основе имеющейся геометрической модели изделия, управляющих программ для изготовления деталей изделия на оборудовании с ЧПУ. Система, решающая данную задачу, называется САМ-системой. Некоторые САМ-системы имеют ограниченные средства для моделирования, но обычно модели деталей, на основании которых строится процесс обработки, “принимаются" из CAD-системы через согласованные интерфейсы.

CAD/CAM-системой называется система, которая обеспечивает интегрированное решение задач разработки конструкторского проекта изделия и формирования управляющих программ для обработки деталей изделия на оборудовании с ЧПУ. Объединение этих, достаточно различных классов задач в рамках одной системы обусловлено тем, что их решение базируется на использовании единой трехмерной геометрической модели изделия. Общность модели позволяет избежать всех проблем, связанных с передачей данных из одной системы в другую, обеспечивает интегрированное решение проектных задач.

Построение пространственной геометрической модели проектируемого изделия является центральной задачей компьютерного проектирования. Именно эта модель используется в CAD/CAM-системе для дальнейшего решения задач формирования чертежно-конструкторской документации, проектирования средств технологического оснащения, разработки управляющих программ для станков с ЧПУ (рис. 3). Кроме того, эта модель передается в САЕ-системы и используется там для проведения инженерных исследований. По компьютерной

модели, с помощью методов и средств быстрого прототипирования, может быть получен физический образец изделий.

Мышление конструктора, применяющего 3D-моделирование, отличается от мышления конструктора, работающего только с чертежами. Эти отличия состоят в следующем.

1.Мысленные “образы чертежей” заменяются “образами моделей”, что раскрепощает пространственное мышление и способствует более быстрому принятию решений.

2.Свобода в создании сложных геометрических форм и понимание того, что эти формы могут быть легко реализованы “в металле” с помощью интегрированных технологий, стимулируют творчество, повышают интерес к работе.

Страницы: 1, 2, 3, 4, 5

рефераты
Новости