рефераты рефераты
Главная страница > Дипломная работа: Устройство и принцип работы растрового электронного микроскопа  
Дипломная работа: Устройство и принцип работы растрового электронного микроскопа
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Устройство и принцип работы растрового электронного микроскопа

1.3.8 Контрольно-измерительные приборы

Для контроля работы блоков электропитания, проведения измерений, а также для выявления неисправностей используются приборы:

миллиамперметр М4200, 500мА;

миллиамперметр М4200, 5мА;

миллиамперметр Ц4200, 300мА;

вольтметр М4200, 75В;

комбинированный прибор Ц4341

Миллиамперметр М4200, 500мА используется для измерения тока линз. Миллиамперметр 4200, 5мА используется для измерения тока нагрузки высоковольтного выпрямителя стабилизатора ускоряющего напряжения. Миллиамперметр Ц4200,300мА используется для контроля тока накала катода источника электронов путём измерения тока первичной обмотки трансформатора накала. Вольтметр М4200,75В используется для контроля выходного напряжения источника напряжения ±50В блока питания.

1.3.9 Прибор индикатора вакуума

В качестве измерителя используется микроамперметр М24-18, напряжение полного отклонения 8,2мв, внутреннее сопротивление не более 60 Ом, класс точности 2,5. Внутри прибора имеется добавочный резистор для увеличения напряжения полного отклонения до 10мВ.

Прибор совместно со схемой позволяет контролировать ток накала ПМГ-2 и ток эмиссии ПМИ-2.

1.3.10 Видеоконтрольное устройство

Видеоконтрольное устройство (ВКУ) предназначено для формирования и воспроизведения телевизионного изображения исследуемой поверхности на экране электроннолучевой трубки (кинескопа), ВКУ выполнено на базе прикладной телевизионной установки ПТУ–29 – 1 – 2 с контурными измерениями для растрового микроскопа.

В состав ВКУ входят следующие узлы и блоки:

а) блок комбинированный;

б) блок видеконрольного устройства ВК – 23;

в) видеоусилитель предварительный;

г) блок регулировки усиления;

д) приспособлен для фотографирования.

1.3.11 Блок комбинированный

Блок комбинированный предназначен для усиления и формирования телевизионного сигнала. Он изготавливается на базе телевизионной камеры КТП – 39 от установки ПТУ 29 – 1 – 2 .

В состав блока входят следующие узлы:

а) видеоуситель УВ – 66;

б) синхрогенератор БГС – 20;

в) генератор строчной развертки ГР – 42;

г) генератор кадровой развертки ГР – 43;

д) блок фильтров БФ – 2;

е) трансформатор;

ж) узел автоматической регулировки режима АРР – 1.

Видеосигнал с предварительного видеоусилителя поступает на видеоусилитель УВ – 66, где усиливается до величины 11,5 в и формируется: в него замешиваются импульсы синхронизации разверток приёмного устройства и импульсы гашения луча приёмной трубки.

Синхрогенератор БГС – 20 вырабатывает все необходимые для нормальной работы ВКУ сигналы синхронизации, гашения и импульсы привязки.

Формирование пилообразного тока в строчных и кадровых отклоняющих катушках колонны осуществляется генераторами ГР – 42 и ГР – 43. Запуск этих генераторов производится синхроимпульсами, поступающими от синхрогенератора.

1.3.12 Блок видеоконтрольного устройства ВК – 23

Видеоконтрольное устройство ВК – 23 предназначено для воспроизведения телевизионного изображения поверхности исследуемого объекта на экране электроннолучевой трубки (кинескопа).

В состав ВК –23 входит:

а) кинескоп 23ЛК13Б с отклоняющей системой;

б) генератор срочной развертки ГР – 39;

в) генератор кадровой развертки ГР – 38;

г) видеоусилитель УВ – 68;

д) блок питания БП – 48.

1.3.13 Приспособление для фотографирования

Приспособление для фотографирования (рисунок 1.18) (фотоприставка) предназначена для визуального наблюдения и фотографирования изображения с экрана кинескопа .

Фотоприставка имеет форму усечённой пирамиды. На плоскости меньшего сечения имеется круглое отверстие, через которое производится фотографирование изображения.

Отверстие уплотняется светозащитным рукавом.

На плоскости меньшего сечения имеется кронштейн, на котором устанавливается фотоаппарат типа «Зенит-Е».

На боковых гранях пирамиды имеются два прямоугольных окна для визуального наблюдения изображения на экране кинескопа.


2. Экспериментальная часть

2.1 Вакуумная система

Вакуумная система предназначена для получения и поддержания в процессе работы рабочего давления 6,66·10Па (5·10 мм рт.ст.) в колонне микроскопа.

Время откачки герметичной колонны от атмосферного давления до рабочего давления 1,33·10 Па (1·10 мм рт.ст.) не превышает 5 мин.

Кроме того, вакуумная система позволяет шлюзовать объект и работать с колонной с выключенным форвакуумным насосом в течение 20 мин.

Вакуумная система (рисунок 2.1) состоит из следующих основных узлов: вакуумного распределителя (1), диффузионного паромасляного насоса В-1С-2(3), высоковакуумной ловушки (2), форбаллона и вакуумо-проводов, которые на рисунке не указаны.

2.1.1 Вакуумный распределитель

Распределитель служит для коммутации магистралей предварительного и высокого вакуума. Распределитель показан на рисунке 2.2. В корпусе 13 размещены:

- канал1, служащий для откачки рабочего объёма на предварительный вакуум;

- каналы 21и29-для откачки форбаллона форвакуумным насосом;

- канал9- для напуска воздуха в колонну;

- канал 34- для откачки колонны дифнасосом.

Распределительный диск 24 с расположенными в нём отверстиями служит для коммутации рабочего объёма и буферного баллона с механическим насосом, а также для напуска воздуха в колонну.


2.1.2 Высоковакуумная ловушка

Высоковакуумная ловушка (рисунок 2.3) служит для улавливания паров масел и устанавливается между вакуумным распределителем и дифнасосом. Она состоит из двух частей; ловушки водяной и ловушки азотной.

2.2 Форвакуумный насос

2.2.1 Принцип действия

Первым насосом такого типа был созданный в 1912 г. пластинчато-роторньтй насос, схема которого показана на рисунке 2.4. В цилиндрической камере 1 насоса вращается в направлении, указав стрелкой, эксцентрично расположенный ротор 2, в прорези которого свободно вставлены пластины З с пружиной 4. При вращении ротора пластины скользят по внутренней поверхности цилиндра, и в камере насоса образуются две полости переменного объема: I (полость всасывания) и II (полость сжатия). Полость всасывания I при вращении ротора увеличивает свой объем, и в нее по ступает газ из впускного патрубка 5, связанного с откачиваемым объемом. Объем полости сжатия II, расположенный на выпускной стороне, уменьшается при вращении ротора, и в ней происходит сжатиё газа. Эта полость соединена с клапаном 6. Когда давление газа в полости II станет достаточным для открытия клапана, произойдет выхлоп. Выхлопной клапан находится под уровнем масла, что препятствует попаданию атмосферного воздуха в насос. В процессе работы зазоры в роторном механизме уплотняются рабочей жидкостью насоса — маслом, благодаря чему обратное перетекание газа с выхода на вход становится ничтожно малым. Масло заполняет и так называемые вредные пространства, из которых газ вытесняется при работе роторного механизма (например, объем под клапаном), и исключает их влияние, ведущее к повышению остаточного давления. Одновременно масло обеспечивает смазку и частичное охлаждение механизма насоса. Масло поступает в камеру насоса через зазоры и сверления в корпусе из маслорезервуара, где оно находится под атмосферным давлением, а через выхлопной клапан вновь возвращается в маслорезервуар.


Рисунок 2.4 - схема пластинчато-роторного насоса

2.2.2 Параметры и характеристики

Остаточное давление и некоторые другие параметры механических насосов с масляным уплотнением в значительной мере определяются свойствами рабочей жидкости (залитого в насос масла). Как газы, так и конденсирующиеся пары, создающие обратный поток, попадают на вход насоса из циркулирующего в нем масла. Перед поступлением в камеру насоса масло некоторое время находится в маслорезервуаре, где подвергается воздействию атмосферного воздуха и поглощает газы. При поступлении масла в рабочую камеру поглощенные ранее газы выделяются из пленки масла и поступают на вход насоса.

У одноступенчатых насосов с масляным уплотнением давление остаточных газов составляет обычно (2,7—6,6)×10 Па [(2 - 5)·10 мм рт. ст.], а полное остаточное давление (2—6,6) Па [(1,5 – 5)·10 мм рт. ст.1.

У насосов с масляным уплотнением давление остаточных газов в основном определяется качеством изготовления.

Остаточное давление насосов измеряют с помощью манометра, присоединенного к заглушке (или к камере небольшого объема) на впускном патрубке насоса. При измерении давления остаточных газов манометр обычно защищают ловушкой, охлаждаемой жидким азотом.

Полное остаточное давление насоса зависит от состава (наличия летучих фракций) и состояния (в первую очередь — от температуры) рабочей жидкости. При повышении температуры масла наблюдается повышение как полного остаточного давления насоса, так и давления остаточных газов.

После запуска холодного насоса установившаяся температура масла (50—70° С) достигается через 2—З ч в зависимости от размеров насоса.

Быстрота действия S насосов с масляным уплотнением определяется их конструкцией. Различают геометрическую быстроту действия S и истинную быстроту действия S или просто быстроту действия насоса.

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости