рефераты рефераты
Главная страница > Реферат: Разработка змееподобного робота, применяемого для диагностики трубопроводов  
Реферат: Разработка змееподобного робота, применяемого для диагностики трубопроводов
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Разработка змееподобного робота, применяемого для диагностики трубопроводов

Используя законы сохранения импульса и момента импульса, нетрудно подсчитать приращения за время быстрых движений линейных и угловых координат, определяющих положение и конфигурацию многозвенников.

В случае трехзвенника приращения переменных х, у, Θ для быстрого движения типа 1 равны

Здесь верхний и нижний знаки отвечают случаям а10=0 и а20=0 соответственно. Для быстрого движения типа 2 получим

Для быстрого движения типа 3 имеем Δх=Δу=0, ΔΘ≠0, причем для ΔΘ также получено явное выражение.

Перейдем к формированию продольного, бокового и вращательного движений многозвенников из элементарных движений.

Продольное движение. Пусть в начальный момент времени трехзвенник имеет прямолинейную форму (Θ=α1=α2=0) и покоится.

1) Выполним медленное движение, повернув звено О1C1 на угол β. Остальные звенья остаются неподвижны. Трехзвенник перейдет в состояние 1 на рис. 3, в котором α1 = β, α2=0

2) Выполним быстрое движение типа 1, в результате которого α1 изменится от β до 0, а α2 - от 0 до β. Трехзвенник перейдет в состояние 2 на рис. 3.

3) Выполним медленное движение, при котором α1 изменится от 0 до –β, а α2 – от β до 0. Трехзвенник перейдет в состояние 3 на рис. 3.

4) Выполним быстрое движение типа 1, при котором α1 изменится от -β до 0, а α2 – от 0 до -β. Трехзвенник перейдет в состояние 4 на рис. 3.

5) Выполним медленное движение, при котором α1 изменится от 0 до β, а α2 – от -β до 0. Трехзвенник перейдет в состояние 5 на рис. 3.

Рис. 3. Продольное движение трехзвенника

Состояние 5 тождественно состоянию 1. Описанный цикл из двух быстрых и двух медленных движений можно повторить любое число раз. Чтобы в конце движения перевести трехзвенник из состояния 5 в прямолинейное состояние 0, нужно выполнить медленное движение, изменив α1 от β до 0.

Подсчитаем полное перемещение трехзвенника за цикл движения. Так как для обоих быстрых движений цикла имеем α20 = 0, то в формулах (3.6) нужно брать нижние знаки, причем β для этих движений имеет разные знаки. Получим для полного смещения


Средняя скорость продольного движения равна υ1 = Δ0 х(2Т)-1, где время медленного движения T и угол β должны удовлетворять неравенству

вытекающему из (3.1) и (3.3).

Теперь рассмотрим боковое движение. Начинаем движение снова из состояния покоя 0 см. рис. 4.

Рис. 4. Боковое движение трехзвенника

1) Выполним медленное движение, изменив угол α1 от 0 до -β, а а2 – от 0 до β. Трехзвенник перейдет в состояние 1 на рис. 4.

2) Выполним быстрое движение типа 2, изменив угол α1 от -β до β, а α2 – от β до -β. Трехзвенник перейдет в состояние 2 на рис. 4.

3) Выполним медленное движение, изменив угол α1 от β до -β, а α2 – от -β до β. Трехзвенник перейдет в состояние 3 на рис. 4.

Состояние 3 идентично состоянию 1. Цикл из быстрого и медленного движений можно повторять. Чтобы в конце движения привести трехзвенник из состояния 3 в исходное состояние 0, достаточно выполнить медленное движение, изменив α1 от -β до 0, а α2 – от β до 0.

Полное смещение трехзвенника за цикл определяется при помощи формул (3.7). Имеем


Средняя скорость бокового движения равна υ2=ΔоуТ-1, где время медленного движения Т и угол β должны удовлетворять неравенству

вытекающему из (3.1) и (3.4).

Чтобы повернуть трехзвенник, находящийся первоначально в состоянии 0 на рис. 5, выполним следующие движения (здесь всегда α1≡ α2).

1) При помощи медленного движения изменим α1= α2 от 0 до α°.

Трехзвенник перейдет в состояние 1 на рис. 5.

2) При помощи быстрого движения типа 3 изменим α1= α2 от α0 до α1. При этом корпус повернется на угол ΔΘ, трехзвенник перейдет в состояние 2 на рис. 5.

Данные движения можно повторять. Чтобы из состояния 2 привести трехзвенник в прямолинейное состояние, нужно выполнить медленное движение, изменив α1= α2 от α1 до 0. В результате трехзвенник повернется на месте на угол ΔΘ.

Рис. 5. Поворот трехзвенника.


Выводы

Как показано, плоский многозвенник может перемещаться по шероховатой горизонтальной плоскости в любом направлении, а также поворачиваться под действием внутренних управляющих моментов, приложенных к его шарнирам. Предложены простые конструктивные способы этих движений, даны достаточные условия их осуществимости, оценены смещения и скорости. Отметим отличительные особенности рассмотренного способа движения по сравнению с другими способами перемещения аппаратов и животных, использующими колеса, ноги, гусеницы.

Рассматриваемые движения происходят исключительно в горизонтальной плоскости, тело контактирует с плоскостью все время одними и теми же своими точками. Все точки тела движутся параллельно этой плоскости, а управляющие моменты перпендикулярны ей. Поэтому размеры тела по вертикали (высота аппарата) могут быть малыми. Высота же колесного или шагающего аппарата ограничена снизу размерами колес или ног.

Для реализации произвольных движений достаточно двух или даже одного двигателя, установленных в шарнирах (для шагающего аппарата требуется не менее двух двигателей для каждой ноги).

Конструкция аппарата и способ движения весьма просты. Эти особенности могут быть полезны при создании мобильных роботов малых размеров.


Список источников

1.  Зенкевич С.Л., «Моделирование движения мобильного колесного робота по сложному маршруту», издательство Московского университета, 2000 г.

2.  Мартыненко Ю.Г., «Проблема управления и динамика мобильных роботов», Новости искусственного интеллекта, 2002 г., №4 (52).

3.  Сайт: www.robot.com.


Страницы: 1, 2

рефераты
Новости