рефераты рефераты
Главная страница > Реферат: Оптические средства обнаружения  
Реферат: Оптические средства обнаружения
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Оптические средства обнаружения

В связи с тем, что электрические помехи имеют или небольшую длительность, или крутой фронт, для повышения помехоустойчивости наиболее эффективно применение алгоритма отстройки -выделения крутого фронта и блокирования выходного устройства на время их действия. Таким образом достигается устойчивая работа СО даже в условиях интенсивных электро- и радиопомех в диапазоне от сотен килогерц до одного гигагерца при напряженности поля до ЮВ/м. В паспортах на современные ИКСО указывается устойчивость к электромагнитным и радиочастотным помехам с напряженностью поля до 20...30 В/м.

Следующим эффективным методом повышения помехоустойчивости является использование схемы "счета импульсов". Диаграмма чувствительности для самых распространенных "объемных" СО имеет многолучевую структуру. Это означает, что при движении человек пересекает последовательно несколько лучей. При этом их число прямо пропорционально количеству лучей, образующих зону обнаружения СО и расстоянию, преодолеваемому человеком. Реализация этого алгоритма различна в зависимости от модификации СО. Чаще всего используется ручная установка переключателя на счет определенного числа импульсов. Очевидно, что в связи с этим при увеличении числа импульсов повышается помехоустойчивость ИКСО. Для срабатывания прибора человек должен пересечь несколько лучей, но при этом может снижаться обнаружительная способность прибора из-за наличия "мертвых зон". В ИКСО фирмы PARADOX используется запатентованный алгоритм обработки сигналов пироприемника APSP, обеспечивающий автоматическое переключение счета импульсов в зависимости от уровня сигналов. Для сигналов высокого уровня детектор сразу вырабатывает тревогу, работая при этом как пороговый, а для сигналов низкого уровня автоматически переключается в режим подсчета импульсов. Это снижает вероятность ложных тревог при сохранении неизменной обнаружительной способности.

В ИКСО Enforcer-QX применены следующие алгоритмы счета импульсов:

- SPP - подсчет импульсов ведется только для сигналов с чередующимися знаками;

- SGP3 - под-считываются только группы импульсов, имеющие противоположную полярность. Здесь состояние тревоги возникает при появлении трех таких групп в течение установленного времени.

В последних модификациях ИКСО для повышения помехоустойчивости применяется схема "адаптированного приема". Здесь порог срабатывания автоматически отслеживает уровень шума, а при его повышении также увеличивается. Однако этот способ не свободен от недостатков. При многолучевой диаграмме чувствительности весьма вероятно, что один или несколько лучей будут направлены на участок интенсивных помех. При этом устанавливается минимальная чувствительность всего прибора, в том числе и тех лучей, где интенсивность помех незначительна. Тем самым снижается общая вероятность обнаружения всего прибора. Для устранения этого недостатка предлагается перед включением прибора "выявлять" лучи с максимальным уровнем шума и затенять их с помощью специальных непрозрачных экранов. В некоторых модификациях приборов они входят в комплект поставки.

Анализ длительности сигналов может проводиться как прямым методом измерения времени, в течение которого сигнал превышает некоторый порог, так и в частотной области путем фильтрации сигнала с выхода пироприемника, в том числе с использованием "плавающего" порога, зависящего от диапазона частотного анализа. Порог срабатывания устанавливается на низком уровне внутри частотного диапазона полезного сигнала и на более высоком уровне вне этого частотного диапазона. Этот метод заложен в ИКСО Enforcer-QX и был запатентован под названием IFT.

Еще один вид обработки, предназначенный для улучшения характеристик ИКСО - это автоматическая термокомпенсация. В диапазоне температур окружающей среды 25...35°С чувствительность пироприемника снижается за счет уменьшения теплового контраста между телом человека и фоном, а при дальнейшем повышении температуры чувствительность снова повышается, но "с противоположным знаком". В так называемых "обычных" схемах термокомпенсации температура измеряется и при ее повышении автоматически увеличивается усилене. При "настоящей", или "двухсторонней" компенсации, учитывается повышение теплового контраста для температур выше 25...35°С. Использование автоматической термокомпенсации обеспечивает почти постоянную чувствительность ИКСО в широком диапазоне температур. Такая термокомпенсация применена в ИКСО фирм PARADOX и С&К SYSTEMS.

Перечисленные виды обработки могут проводиться аналоговыми, цифровыми или комбинированными средствами. В современных ИКСО все шире начинают применяться методы цифровой обработки с использованием специализированных микроконтроллеров с АЦП и сигнальных процессоров, что позволяет проводить детальную обработку "тонкой" структуры сигнала для лучшего выделения его на фоне помех. В последнее время появились сообщения о разработке полностью цифровых ИКСО, вообще не использующих аналоговых элементов. В этом ИКСО сигнал с выхода пироприемника непосредственно поступает на аналого-цифровой преобразователь с высоким динамическим диапазоном и вся обработка производится в цифровом виде. Использование полностью цифровой обработки позволяет избавиться от таких "аналоговых эффектов" как возможные искажения сигналов, фазовые сдвиги, избыточные шумы. В Digital 404 используется запатентованный алгоритм обработки сигналов SHIELD, включающий в себя APSP, а также анализ следующих параметров сигналов: амплитуды, длительности, полярности, энергии, времени нарастания, формы, времени появления и порядка следования сигналов. Каждая последовательность сигналов сравнивается с образцами, соответствующими движению и помехам, причем опознается даже вид движения и если не удовлетворяются критерии тревоги, то данные сохраняются в памяти для анализа следующей последовательности или вся последовательность подавляется. Совместное применение металлического экранирования и программного подавления помех позволило повысить устойчивость Digital 404 к электромагнитным и радиочастотным помехам до 30...60 В/м в диапазоне частот от 10 МГц до 1 ГГц.

Известно, что вследствие случайного характера полезных и помеховых сигналов наилучшими являются алгоритмы обработки, основанные на теории статистических решений. Судя по заявлениям разработчиков, эти методы начинают использоваться в последних моделях ИКСО фирмы С&К SYSTEMS.

Вообще говоря, объективно судить о качестве используемой обработки, основываясь только на данных фирмы-производителя, довольно трудно. Косвенными признаками обладания СО высокими тактико-техническими характеристиками могут быть наличие аналого-цифрового преобразователя, микропроцессора и большого объема используемой программы обработки.


Выводы

1. Принцип действия ИКСО основан на регистрации собственного теплового излучения нарушителя или изменении параметров ИК-излучения при пересечении луча нарушителем.

2. Развитие ИКСО идет главным образом в направлении повышения помехоустойчивости за счет совершенствования оптических систем, алгоритмов обработки сигналов, широкого применения методов цифровой обработки сигналов с использованием специализированных микроконтроллеров и процессоров.

3. При выборе типов и количества СО для обеспечения охраны конкретного объекта следует учитывать возможные пути и способы проникновения нарушителя, требуемый уровень защиты, расходы на приобретение, монтаж и эксплуатацию СО, особенности объекта, соответствие тактико-технических характеристик СО предполагаемым условиям эксплуатации.

4. Особенностью ИКСО является их универсальность. С их использованием возможно блокирование проникновения в самые разнообразные помещения и блокирование подходов к различным конструкциям и предметам.


Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости