рефераты рефераты
Главная страница > Курсовая работа: Программирование системы уравнений  
Курсовая работа: Программирование системы уравнений
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Программирование системы уравнений

Курсовая работа: Программирование системы уравнений

Содержание

Введение

1 Постановка задачи

2 Решение системы уравнения методом Гаусса

3 Решение уравнения методами Ньютона, Хорд

4 Разработка блок схемы решения системы уравнения методом Гаусса

5 Разработка блок схемы решения уравнения методом Ньютона

6 Разработка блок схемы решения уравнения методом Хорд

7 Язык программирования Turbo Pascal

8 Разработка программы решения системы уравнения методом Гаусса при помощи Turbo Pascal

9 Разработка программы решения уравнения методом Ньютона при помощи Turbo Pascal

10 Разработка программы решения уравнения методом Хорд при помощи Turbo Pascal

Заключение

Список используемых источников


Введение

В основе того или иного языка программирования лежит некоторая руководящая идея, оказывающая существенное влияние на стиль соответствующих программ.

Исторически первой была идея структурирования программ, в соответствии с которой программист должен был решить, какие именно процедуры он будет использовать в своей программе, а затем выбрать наилучшие алгоритмы для реализации этих процедур. Появление этой идеи было следствием недостаточной изученности алгоритмической стороны вычислительных процессов, столь характерной для ранних программных разработок (сороковые — пятидесятые годы). Типичным примером процедурно-ориентированного языка является Фортран – первый и всё ещё один из наиболее популярных языков программирования. Последовательное использование идеи процедурного структурирования программ привело к созданию обширных библиотек программирования, содержащих множество сравнительно небольших процедур, из которых, как из кирпичиков, можно строить «здание» программы.

По мере прогресса в области вычислительной математики акцент в программировании стал смещаться с процедур в сторону организации данных. Оказалось, что эффективная разработка сложных программ нуждается в действенных способах контроля правильности использования данных. Контроль должен осуществляться как на стадии компиляции, так и при прогоне программ, в противном случае, как показала практика, резко возрастают трудности создания крупных программных проектов. Отчётливое осознание этой проблемы привело к созданию Ангола-60, а позже Паскаля, Модулы-2, Си и множества других языков программирования, имеющих более или менее развитые структуры типов данных. Логическим следствием развития этого направления стал модульный подход к разработке программ, характеризующийся стремлением «спрятать» данные и процедуры внутри модуля.

Начиная с языка Симула-67, в программировании наметился новый подход, который получил название объектно-ориентированного программирования (в дальнейшем ООП). Его руководящая идея заключается в стремлении связать данные с обрабатывающими эти данные процедурами в единое целое – объект. Характерной чертой объектов является инкапсуляция (объединение) данных и алгоритмов их обработки, в результате чего и данные, и процедуры во многом теряют самостоятельное значение.


1 Постановка задачи

Цель решения задачи курсовой работы – автоматизация решения системы уравнения методом Гаусса, а так же решения уравнения методами Хорд и Ньютона.

Выходная информация задачи выводиться на экран монитора.

Входная информация задачи поступает путем ввода пользователем данных для решения поставленной задачи

Прекращение решения задачи выполняется при выходе нового программного обеспечения, связанного с решением данной задачи или появление новой версии данного продукта.

2 Решение системы уравнения методом Гаусса

Метод Гаусса— классический метод решения системы линейных алгебраических уравнений (СЛАУ). Состоит в постепенном понижении порядка системы и исключении неизвестных.

Хотя в настоящее время данный метод повсеместно называется методом Гаусса, он был известен и до К. Ф. Гаусса. Первое известное описание данного метода — в китайском трактате «Математика в девяти книгах», составленном между I в. до н.э. и II в. н. э.

Описание метода

Пусть исходная система выглядит следующим образом

\left\{\begin{array}{lcr}a_{11}x_1+\ldots+a_{1n}x_n &=& b_1 \\\ldots & & \\a_{m1}x_1+\ldots+a_{mn}x_n &=& b_m \\\end{array}\right.\iff A\vec{x}=\vec{b},\quad A=\left( \begin{array}{ccc}a_{11} & \ldots & a_{1n}\\\ldots &  &  \\a_{m1} & \ldots & a_{mn}\end{array}\right),\quad \vec{b}=\left( \begin{array}{c}b_1 \\ \vdots \\ b_m \end{array} \right).\quad (1)

Тогда согласно свойству элементарных преобразований над строками эту систему можно привести к ступенчатому виду:


\left\{\begin{array}{rcl}\alpha_{1j_1}x_{j_1}+\alpha_{1j_2}x_{j_2}+\ldots+\alpha_{1j_r}x_{j_r}+\ldots+\alpha_{1j_n}x_{j_n} &=& \beta_1 \\                     \alpha_{2j_2}x_{j_2}+\ldots+\alpha_{2j_r}x_{j_r}+\ldots+\alpha_{2j_n}x_{j_n} &=& \beta_2 \\                                                                                               &\ldots& \\                                                 \alpha_{rj_r}x_{j_r}+\ldots+\alpha_{rj_n}x_{j_n} &=& \beta_r \\                                                                                                0 &=& \beta_{r+1}\\                                                                                                0 &=& 0 \\                                                                                               &\ldots& \\                                                                                                0 &=& 0\end{array}\right.,\qquad \alpha_{1j_1},\ldots,\alpha_{rj_r}\neq 0.

Переменные x_{j_1},\ldots,x_{j_r}\!называются главными переменными. Все остальные называются свободными.

Если \beta_{r+1}\neq 0\!, то рассматриваемая система несовместна.

Предположим, что \beta_{r+1}= 0\!.

Перенесём свободные переменные за знаки равенств и поделим каждое из уравнений системы на свой коэффициент при самом левом x\!(\alpha_{ij_i},\, i=1,\ldots,r\!, где i\!— номер строки):

\left\{\begin{array}{rcc}x_{j_1}+\widehat{\alpha}_{1j_2}x_{j_2}+\ldots+\widehat{\alpha}_{1j_r}x_{j_r}&=& \widehat{\beta}_1-\widehat{\alpha}_{1j_{r+1}}x_{j_{r+1}}-\ldots- \widehat{\alpha}_{1j_n}x_{j_n} \\                     x_{j_2}+\ldots+\widehat{\alpha}_{2j_r}x_{j_r}&=& \widehat{\beta}_2-\widehat{\alpha}_{2j_{r+1}}x_{j_{r+1}}-\ldots- \widehat{\alpha}_{2j_n}x_{j_n} \\                                                           &\ldots& \\                                                       x_{j_r}&=& \widehat{\beta}_r-\widehat{\alpha}_{rj_{r+1}}x_{j_{r+1}}-\ldots- \widehat{\alpha}_{rj_n}x_{j_n} \\\end{array}\right., \qquad \widehat{\beta}_i=\frac{\beta_i}{\alpha_{ij_i}},\quad \widehat{\alpha}_{ij_k}=\frac{\alpha_{ij_k}}{\alpha_{ij_i}}\quad (2),

где i=1,\ldots,r,\quad k=i+1,\ldots,n.\!

Если свободным переменным системы (2) придавать все возможные значения и вычислить через них главные переменные, то мы получим все решения. Так как эта система получена путём элементарных преобразований над исходной системой (1), то по теореме об эквивалентности при элементарных преобразованиях полученное нами решение является решением системы (1).

Следствия:

1: Если в совместной системе все переменные главные, то такая система является определённой.

2: Если количество переменных в системе превосходит число уравнений, то такая система является либо неопределённой, либо несовместной.

Условие совместности.

Упомянутое выше условие \beta_{r+1}= 0\!может быть сформулировано в качестве необходимого и достаточного условия совместности:

Напомним, что рангом совместной системы называется ранг её основной матрицы (либо расширенной, так как они равны).

Алгоритм решения СЛАУ методом Гаусса подразделяется на два этапа.

1) На первом этапе осуществляется так называемый прямой ход, когда путём элементарных преобразований над строками систему приводят к ступенчатой или треугольной форме, либо устанавливают, что система несовместна. А именно, среди элементов первого столбца матрицы выбирают ненулевой, перемещают его на крайнее верхнее положение перестановкой строк и вычитают получавшуюся после перестановки первую строку из остальных строк, домножив её на величину, равную отношению первого элемента каждой из этих строк к первому элементу первой строки, обнуляя тем самым столбец под ним. После того, как указанные преобразования были совершены, первую строку и первый столбец мысленно вычёркивают и продолжают пока не останется матрица нулевого размера. Если на какой-то из итераций среди элементов первого столбца не нашёлся ненулевой, то переходят к следующему столбцу и проделывают аналогичную операцию.

Страницы: 1, 2, 3, 4

рефераты
Новости