рефераты рефераты
Главная страница > Курсовая работа: Проектирование цифровой линии  
Курсовая работа: Проектирование цифровой линии
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Проектирование цифровой линии

Пусть цифровое сообщение кодируется двоичным (n,k) - кодом, где n - общее число символов, k - число информационных символов.

Эквивалентная вероятность ошибки:

рэ= (dx Mбл /2n) [1 - Ф (2Ебdxk / nN0) 1/2], (2.2)

где Еб/N0=Pcto/N0; Еб - энергия сигнала, затрачиваемая на один бит информации; Pc - мощность принимаемого сигнала; to - длительность одного информационного символа, поступающего на вход кодера канала связи; dx - кодовое расстояние между рассматриваемыми символами; Mбл - число ближайших сигналов на расстоянии d от принимаемого сигнала; N0 - спектральная плотность белого шума. Интеграл вероятности можно аппроксимировать экспоненциальной функцией. В широкой области значений р<<1 вероятность ошибки хорошо аппроксимируется выражением

p=0,5 [1 - Ф (22x) =0,1exp (-x2).

Тогда из (2.3) получим

рэ= (dxMбл/10n) exp (-Eбdxk/nN0).

Отсюда Ln (10рэ) =Ln (dxMбл/n) - Eбdxk/nN0 или

Еб/N0= (Ln (dxMбл/n) - Ln (10рэ)) /dx (k/n).

Эта формула является основной при оценке помехоустойчивости различных кодов. Для кодов без избыточности и противоположных сигналов (с фазовой манипуляцией на 1800) пологая p=рэ, можно записать: p=0,5 [1 - Ф

(21/2h0)] =0,1exp (-h02);

Ln (10p) = h02,где h02 = Еб/N0 - требуемое отношение энергии сигнала на 1 бит к спектральной плотности шумов для двух противоположных сигналов.

Таким образом, для р=10-6 получим:

h02= - Ln (10*10-6) =11,5.

Обозначим полосу частот, занимаемую спектром сигнала, через Dfэ (ширина спектра сигнала). Тогда h02можно представить в виде:

где Бс =Df э * t0 - база сигнала, а (Рс/Рш) вх - отношение средней мощности сигнала к средней мощности шума на входе приемника, взятое в полосе частот Df э.

Для простых сигналов Бс = 1, следовательно: q = (Рс/Рш) вх = h02

Для расчетов увеличим это значение на 30 %: q = 11.5 + 30 % = 15

Будем считать приемлимым такой шум квантователя который в 4 раза меньше, чем шумы на входе приемника, следовательно: q` = 4 * q = 60. Подставляя это значение в формулу (2.1) с учетом D = 20 dB = 10 раз, получаем:

60 * 100 / 3 = 2

Таким образом выбираем разрядность квантователя: В = 5 разрядов

2.3 Выбор группового сигнала и расчет его параметров

На основании расчетов, приведенных в пункте определение частоты дискретизации, определим длительность интервала времени, в течение которого необходимо передать информацию о текущем отсчете входного сигнала. Выберем синхронный метод передачи с кадровой синхронизацией. Чтобы на приемной стороне мы могли обработать информацию требуется знать момент времени ее появления. Для этого в начале канального сигнала (кадра) размещается так называемый синхросигнал, который отличается от информационного сигнала. Таким образом кадр состоит из двух частей: сигнала синхронизации и информационного сигнала:

Тк=Тс+Ти,

где Тк - длительность канального сигнала; Тс - длительность синхроимпульса; Ти - длительность информационного сигнала

Причем Тк=1/Fo=1/25*103=4*10-5 сек. = 40 мкс.

Имеем 10 каналов, количество элементарных передаваемых символов в каждом канале равно числу уровней квантования В = 5, Т.о. количество элементарных символов в информационном сигнале: Nи = 5*10 = 50. В качестве синхрослова выберем сложный сигнал (составной), в этом случае для уменьшения вероятности ложного срабатывания системы кадровой синхронизации необходимо или выбирать длительность синхросигнала ³ 1/2 Ти или вводить в информационный сигнал запрещенные комбинации, что сильно усложняет аппаратуру. В нашем случае Ти / 2 =12.5, поэтому выберем синхронизацию по кадрам с помощью тринадцатиразрядного кода Баркера. Коды Баркера являются наилучшими в своем классе. АКФ этих кодов имеет узкий центральный пик и минимальный уровень боковых лепестков = 1/N, где N - значность кода.

Количество элементарных символов в кадре:

N =Nс + Nи = 50 + 13 = 63 (шт.)

Длительность элементарного символа:

t = Тк / N = 4 0*10-6/ 63 @ 6.35*10-7=0.635 мкс.

Тактовая частота: fт = 1/t = 1.575*106 Гц =1.6 МГц

В первом приближении ширина спектра КИМ-ФМ-ФМ определяется шириной главного лепестка:

Df = 2 * (1/t) = 2 * 1/1.6*106 = 3.16*106 Гц = 3.16 МГц


Вид группового сигнала:

2.4 Расчет энергетического потенциала

Энергетическим потенциалом радиолинии называется отношение средней мощности сигнала к спектральной плотности шума, пересчитанное ко входу приемника.

В задании курсового проектирования задана линия с расстоянием между приемником и передатчиком 200 км. Зададимся, что это линия Земля - управляемый объект. Линия связи подобного типа предназначена для передачи различных команд с пункта управления на борт беспилотного летательного аппарата. Достоверность приема таких команд должна быть весьма высокой, а допустимая вероятность ошибки принятой команды составляет 10-5-10-6 и менее.

Данные, необходимые для расчета:

Расстояние между приемником и излучателем r = 200 км.

Длина волны l = 3 см.

Частота f = C / l = 10 ГГц

Наземная передающая антенна параболического типа диаметром 1м.

Бортовая антенна: площадь 0,18 м2; антенна всенаправленная (D = 1)

пороговое отношение С/Ш = hо2 = - Ln (10*10-6) = 11,5 (см. П 2.2)

длительность элементарного символа: t = 0.18мкс (см. П 2.3)

Эквивалентная шумовая температура бортового приемника: Тэ = 1000 К; Л: [3] Расчет взят из Л: [3]

В соответствии с известным уравнением дальности связи мощность сигнала на входе приемника определяется выражением:

Рс вх = Ризл * gЕ * G * Sэ / 4pr2 (2.3)

где Ризл - средняя мощность, излучаемая передатчиком

G - КНД антенны передатчика

Sэ - эффективная площадь приемной антенны

r - расстояние между передатчиком и приемником

gЕ - коэффициент, учитывающий потери энергии сигнала в среде за счет поглощения:

gЕ = exp ( - 0.23ar); для l = 3 см. a = 0.15 dB/км

Т.о. Рс вх = Ризл * G * Sэ / (4pr2) * exp ( - 0.23ar) (2.4)

Если основными помехами в линии связи являются внутренние флуктационные шумы и другие случайные помехи шумового типа, то пересчитав эти помехи ко входу приемника, можно получить результирующую спектральную плотность помех на входе в виде:

 (2.5)

где Noi - спектральная плотность случайной помехи i - го вида, пересчитанная ко входу приемника

Мощность всех помех на входе приемника, определяемая в полосе частот Dfэ занимаемой спектром сигнала, равна

 (2.6)

где fо - частота несущей

Выражение (2.6) можно представить в виде

 (2.7)

В простейшем случае, когда основной помехой являются только внутренние флюктуационные шумы приемника с равномерной спектральной плотностью No, мощность помехи на входе (при согласованном входе) равна

Рш вх = No Dfэ = к Тэ Dfэ (2.8)

где к = 1,38*10-23 Дж/К - постоянная Больцмана

Тэ - эквивалентная шумовая температура входа.

С учетом выражений (2.4) и (2.7) отношение средней мощности сигнала к средней мощности шума на входе приемника определяется формулой:

 (2.9)

Это выражение определяет фактическое отношение С/Ш на входе приемника при известных параметрах линии связи. Пусть для того, чтобы обеспечить требуемую вероятность ошибки при передаче одной двоичной еденицы информации, необходимо иметь энергетическое отношение С/Ш:

h02 = Е0/N0S = (Рс/Рш) вх * t * Dfэ (2.10)

Тогда требуемое отношение С/Ш на входе приемника:

(Рс/Рш) тр = U h0 2/t Dfэ (2.11)

U - коэффициент запаса, выбирается от 2 до 10

зададимся U = 10

Для того чтобы линия связи обеспечивала передачу информации с помехоустойчивостью не ниже заданной, необходимо выполнить условие:

(Рс/Рш) вх ³ (Рс/Рш) тр (2.12)

Приняв во внимание (2.9), (2.11) и (2.12), имеем:

 (2.13)

Определим требуемую мощность передатчика:

Sэ = Sпр = 0.18 м2 - эффективная площадь приемной антенны (D = 1)

КНД передающей антенны

G=ha (pDп/l) 2, где

Dп=1м - диаметр передающей антенны

ha - КИП (коэффициент использования площади) - коэффициент учитывающий эффективность использования площади раскрыва антенны (0,55 для параболической)

G=0,55 (3,14*1/0.03) 2 = 6025; G = 38 дБ.

Мощность передатчика:

Рпер * 3.911 * 104 ³ 1.15 * 106

Рпер ³ 1.15 Вт, Возьмем Рпер = 5 Вт.

2.5 Выбор структурной схемы передатчика

Передаваемые аналоговое сигналы через коммутатор, подаются на АЦП, в котором они преобразуются в цифровой код. Каждому аналоговому сообщению соответствует свое кодовое слово. Все кодовые слова имеют одинаковую разрядность (8). При заданном динамическом диапазоне 10 дБ можно применять восьмиразрядное линейное квантование. С помощью преобразователя кода (регистр) параллельный код преобразуется в последовательный. Все слова от источников сообщений образует кадр. Для определения в приемнике начала кадра в него вводится в синхрослово (выбираем семиразрядный код Баркера). Объединение синхрослова и кодовых слов происходит в сумматоре. Далее сигналы поступают на фазовый манипулятор в котором манипуляция фазы происходит по закону ОФМ. Сформированным фазоманипулированным сигналом осуществляется фазовая модуляция несущего колебания. С помощью системы синхронизации происходит управление работой передающей части радиолинии. Подключение аналоговых сигналов U1 (t),U2 (t) ………U5 (t) к АЦП происходит с периодом, который определяется частотой процессов U,U2……U5 (fв=5 Гц.). Система синхронизации управляет также работой регистра и вырабатывает также работой регистра и вырабатывает запускающий импульс по которому формируется код Баркера, т.е. синхрослово.

Страницы: 1, 2, 3, 4, 5

рефераты
Новости