рефераты рефераты
Главная страница > Курсовая работа: Методы отсечения  
Курсовая работа: Методы отсечения
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Методы отсечения

2) Выполнено по крайней мере одно из двух условий:

2') целевая функция ограничена снизу на многогранном множестве £= £0;

2») задача (£0ц, C) имеет по крайней мере один план.

С помощью второго алгоритма Гомори можно (в случае n1=n) решать и полностью целочисленную задачу линейного программирования. Однако в этом случае нет оснований для сравнения эффективности второго и первого алгоритмов Гомори.

5. Алгоритм Дальтона и Ллевелина

Второй алгоритм Гомори имеет дело с частично целочисленными задачами линейного программирования. Дальтон и Ллевелин рассматривают 0 олее широкий класс задач – частично дискретные задачи линейного программирования и применительно к ним модифицируют второй алгоритм Гомори.

Напомним, что решением задачи дискретного программирования будем называть вектор, координаты которого принадлежат £ц области вида:

                                  (27)

                                            (28)

       (29)


и максимизирует значение функции

                                        (30)

Будем предполагать, что  проранжированы, т.е.  и являются наперед заданными числами.

Теорема. Пусть x(£k, C) – оптимальное решение задачи (27–28, 30),  – элементы симплексной таблицы, соответствующей ему.

Если x(£k, C) является недопустимым решением задачи (27–30) и , тогда, используя i-ю строку симплексной таблицы, можно построить отсечение, обладающее свойством правильности по формулам:

                                (31)

                                                (32)

где

                (33)

Доказательство. Проверим вначале условие отсечения. Пусть в оптимальном решении x(£k, C) координата  не удовлетворяет условию (29). Покажем, что в этом случае вектор х(£k, C) не удовлетворяет условиям (31, 32). Поскольку Nk – множество индексов небазисных переменных xi, которые в оптимальном решении равны нулю, то равенство (31) принимает вид  и будет отрицательным согласно условию теоремы. Следовательно, , т.е. условие отсечения не выполняется.

Проверим условие правильности. Для этого покажем, что любое допустимое решение задачи (27–30) удовлетворяет условиям (31, 32).

Запишем разложение для координаты допустимого решения задачи (27–30) по небазисным переменным

            (34)

и рассмотрим два случая: a) ; б) . Введем обозначения:

и представим (34) в виде

где

Очевидно,  так как .

Рассмотрим случай а): , или что все равно, .

Отсюда Но поэтому


                                                      (35)

Домножим обе части (35) на неотрицательную величину  и сложим с неотрицательной величиной :

                                  (36)

Рассмотрим случай б):  или, что все равно,  Так как по определению , то  Умножим обе части неравенства  на неотрицательную величину  и на -1, получим . Прибавляя к полученному выражению неравенство , получим

                                  (37)

Таким образом, в а) и в б) случаях пришли к одному и тому же неравенству (36) и (37). Пользуясь ранее введенными обозначениями, их можно записать

    (38)

Формула (38) определяет правильные отсечения. Сравнивая ее с выражением (31–32), приходим к выводу, что коэффициенты определяются следующим образом:


Теорема доказана.

Алгоритм Дальтона – Ллевелина может быть описан следующим образом.

1. Решается (£k, C) – задача (27–30) (вначале k = 0). Пусть x(£k, C), k = 0, 1, 2,… оптимальное решение (£k, C) – задачи,  – симплексная таблица.

2. Проверяется условие допустимости по всем координатам оптимального вектора решения х(£k, C) (£k, C) – задачи. Если условие допустимости выполняется, то полученное решение является оптимальным решением исходной задачи (27–30). Если условие допустимости не выполняется хотя бы по одной координате, осуществляется переход к 3.

3. Пусть  не удовлетворяет условию допустимости. Тогда выбирается

i0 = min i.

4. Для выбранного номера i=i0 строится правильное отсечение, т.е. вводится дополнительная переменная

где определяется формулой (33),

5. Добавляем линейное ограничение, определяющее правильное отсечение, к условиям (£k, C) – задачи и получаем новую (£k+1, C) – задачу. Полагая k = k + 1, переходим к п. 1.

Приведем без доказательства теорему о конечности алгоритма.

Теорема. Если: коэффициенты целевой функции дискретны; F(x) ограничена снизу на многогранном множестве £; задача (£, C) имеет по крайней мере одно решение; выбор строки для построения правильного отсечения производится по правилу минимального номера и (£k, C) – задачи решаются методом последовательного уточнения оценок, то алгоритм Дальтона и Ллевелина сходится.

6. Алгоритм Данцига

Способ построения правильных отсекающих плоскостей, предложенный Данцигом значительно проще, чем все изложенные выше способы. Но, как показали Гомори и Гофман, конечность алгоритма Данцига гарантируется лишь для очень узкого класса задач. На примере алгоритма Данцига видно, насколько тонким является вопрос о построении правильных отсечений и сколь осторожно следует подходить к различным упрощенным алгоритмам.

Рассматривается полностью целочисленная задача линейного программирования:

Максимизировать

                         (39)

при условиях

                 (40)

                        (41)

 – целые, (42)


Ранг матрицы  считаем равным m.

Теорема. Пусть x(£r, C)=xr является оптимальным опорным планом задачи (£r, C) и xr не удовлетворяет условию целочисленности, Nr – множество индексов, нумерующих небазисные переменные, соответствующие xr.

Тогда неравенство

                                  (43)

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости