рефераты рефераты
Главная страница > Курсовая работа: Математические методы в решении экономических задач  
Курсовая работа: Математические методы в решении экономических задач
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Математические методы в решении экономических задач

Решение задачи двойственным методом

Под двойственной задачей понимается вспомогательная задача линейного программирования, формулируемая с помощью определённых правил непосредственно из условий прямой задачи. Заинтересованность в определении оптимального решения прямой задачи путём решения двойственной к ней задачи обусловлена тем, что вычисления при решении ДЗ могут оказаться менее сложными. Трудоёмкость вычислений при решении ЗЛП в большей степени зависит от числа ограничений, а не от количества переменных.

Каждой задаче линейного программирования можно определенным образом сопоставить некоторую другую задачу линейного программирования, называемую двойственной или сопряженной по отношению к исходной или прямой.

5Х1+2Х2 ≤ 750 Y1

(1.1)

 
4Х1+5 Х2 ≤ 807 Y2

Х1+7Х2 ≤ 840 Y3

F = 30Х₁ +49Х₂ => max

Целевая функция исходной задачи задаётся на максимум, а целевая функция двойственной – на минимум.

Составим матрицу для исходной задачи:

А =

Чтобы составить матрицу для двойственной задачи нужно применить транспонирование (т.е. замена строк – столбцами, а столбцов – стоками)

АТ =

Число переменных в двойственной задаче равно числу соотношений в системе (1.1) исходной задачи, т.е. равно трем.

Коэффициентами в целевой функции двойственной задачи являются свободные члены системы уравнений, т .е 750,807,840.

Целевая функция исходной задачи исследуется на максимум, а система условий содержит только уравнения. Поэтому в двойственной задаче целевая функция исследуется на минимум, а её переменные могут принимать любые значения (в том числе и отрицательные). Следовательно, для исходной задачи двойственная задача такова: умножим правые части ограничений на соответствующие переменные двойственной задачи и сложим их, получим целевую функции


Z(Y) = 750Y1 + 807Y2 + 840Y3 => min.

5Y1 + 4Y2 + Y3 ≥ 30

2Y1 + 5Y2 + 7Y3 ≥ 49

Y1 = 0

Y2 = 7

Y3 = 2

Z(Y) = 750·0 + 807·7+ 840·2 = 7329

Ответ: Z(Y) = F(Х) = 7329, Y1* = 0, Y2* = 7, Y3* = 2.

Транспортная задача линейного программирования

Под названием «транспортная задача» объединяется широкий круг задач с единой математической моделью. Данные задачи относятся к задачам линейного программирования и могут быть решены симплексным методом. Однако матрица системы ограничений транспортной задачи настолько своеобразна, что для ее решения разработаны специальные методы. Эти методы, как и симплексный метод, позволяют найти начальное опорное решение, а затем, улучшая его, получить оптимальное решение.

Задача №2

Формулировка транспортной задачи

На три базы: А₁, А₂, А₃ поступил однородный груз в количествах: а₁, а₂, а₃, соответственно. Груз требуется перевезти в пять пунктов: b₁ в пункт В₁, b₂ в пункт В₂, b₃ в пункт В₃, b₄ в пункт В₄, b₅ в пункт В₅.

Спланировать перевозки так, чтобы общая их стоимость была минимальной. Матрица тарифов сij перевозок между пунктами отправления и пунктами назначения, а также запасы и потребности представлены ниже:


Пункт отправления В₁ В₂ В₃ В₄ В₅ Запасы, аi
А₁ 2 4 5 11 3 400
А₂ 12 8 6 14 11 370
А₃ 10 15 7 9 18 380
Потребности, bj 250 200 290 260 150 1150

Исходные данные транспортной задачи обычно записываются в таблице:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

рефераты
Новости