рефераты рефераты
Главная страница > Курсовая работа: Линейный усилитель  
Курсовая работа: Линейный усилитель
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Линейный усилитель

Выбираем 3 каскада.

3. Обоснование выбора принципиальной схемы усилителя

Принципиальная схема простейшего трехкаскадного линейного усилителя, составленного согласно описанной ранее структурной схеме, приведена на рис. Усилитель состоит из трех каскадов по схеме с ОЭ на транзисторах V1, V2, V3. Ток покоя каждого каскада стабилизируется с помощью эмиттерных схем стабилизации. Между первым и вторым каскадом связь непосредственная, между вторым и третьим – осуществляется через разделительный конденсатор C8.

Отсутствие делителя напряжения и разделительного конденсатора на входе второго каскада дает экономию количества элементов схемы и некоторую экономию тока питания, кроме того, отсутствие разделительного конденсатора снижает амплитудно-частотные искажения на низких частотах.

Однако использование непосредственной связи имеет недостаток – требуется большее напряжение питания. Так как для второго каскада делителем напряжения служит первый каскад, все колебания режима первого каскада вызывают колебания режима второго. Поэтому в этой схеме важна особенно стабилизация режима первого каскада.

Для ослабления паразитной обратной связи между каскадами через общий источник питания цепь питания содержит фильтрующие цепи R6, C3, R1, C5. Входные и выходные устройства усилителя выполнены на дифференциальных трансформаторах Т1, Т2. Резисторы R1, R16 – балансные. В усилителе применена общая ООС, организуемая с помощью входного и выходного устройств. В пассивной части цепи ООС включены контур АРУ, КНН и переменный удлинитель R7, R10, R12. По входу и выходу имеет место комбинированная ООС. Обратная связь осуществляется только по переменному току, поэтому на входе и выходе цепи ООС установлены разделительные конденсаторы C2, C11.

Конденсаторы C1, C7, C10 создают, путь высокочастотного обхода пассивной части петли ООС и предотвращает возможность самовозбуждения усилителя за пределами его рабочего диапазона частот.

4. Расчет оконечного каскада

Оконечный каскад обеспечивает получение заданной мощности сигнала в нагрузке, при этом он должен вносить допустимые нелинейные искажения. В линейных усилителях аппаратуры систем передачи используются однотактные трансформаторные оконечные каскады с включением транзистора по схеме с ОЭ. Усилительный элемент (транзистор) в таких каскадах работает в режиме А, что позволяет получить сравнительно небольшие нелинейные искажения.

Тип транзистора оконечного каскада выбирается по максимальной допустимой рассеиваемой мощности коллектора Рk max и граничной частоте коэффициента передачи тока fгр в схеме с ОЭ. При этом должны выполняться условия: fгр ≥(40÷100) fв; Рк мах ≥(4÷5) Рн, где Рн – мощность, отдаваемая в нагрузку.

fгр ≥ 80*552 = 4416 кГц; Рк мах ≥ 5*45 = 225 мВт.

Параметры транзистора ГТ312А

Структура транзистора n-p-n

Граничная частота коэффициента передачи тока в схеме с ОЭ ƒгр, МГц

80

Максимально допустимая постоянная рассеиваемая мощность коллектора P к max, мВт

225

Коэффициент передачи тока биполярного транзистора в режиме малого сигнала в схеме с ОЭ: h21э min

10

h21э max

10

Максимально допустимое постоянное напряжение коллектор – эмиттер Uкэ mах, В

20

Максимально допустимый постоянный ток коллектора I k max, мA

30

Объемное сопротивление базы на высоких частотах rб', Oм

100

Из проведенных расчетов выбирается транзистор типа ГТ312А.

Определяется рабочая область характеристики транзистора. Для этого на выходных характеристиках транзистора строится характеристика максимально допустимой мощности рассеяния:

Iк1 = = = 45 мA

Iк2 == 22,5 мA

Iк3 == 15 мA

Iк4 == 11,25 мA

Для построения этой характеристики задается значения Uкэ для транзистора ГТ312А от 5 В до 25 В.

На оси напряжений отмечаются эти значения и восстанавливаются перпендикуляры до пересечения с соответствующим каждому значению Uкэ току Iк. Затем полученные точки соединяются плавной линией, (Рис. 3.) далее проводятся линии, соответствующие Uкэ мах и Uост. Значение Uост определяется графически, для этого опускается на ось напряжений перпендикуляр из точки перегиба верхней вольт – амперной характеристики.


Выходная

Определение рабочей области характеристик транзистора ГТ312А

Определяется напряжение покоя транзистора по максимально допустимому напряжению Uкэ мах:

Uко ≤ =  = 10,63 ≈ 11B;

Определяется мощность, отдаваемая транзистором с учетом заданного КПД трансформатора ηтр = 0,9:

Р'~ = = = 50 мВт;

Определяется мощность рассеяния на коллекторе транзистора:

Рко = = = 138,9 мВт;

где ηА – максимальный КПД каскада в режиме А, принимается равным 0,4;

ηос – коэффициент, учитывающий потери мощности сигнала в цепи обратной связи, принимается равным 0,9;

Ток покоя рассчитывается, исходя из мощности рассеяния на коллекторе транзистора:

Iко = = = 12,6 мА;

На семействе выходных характеристик транзистора (Рис. 4.) отмечаются выбранные Uко, Iко и определяется соответствующей точке покоя ток базы Iбо (входной ток) Полученное значение Iбо отмечается на входной характеристике и определяется соответствующее ему напряжение смещения Uбо.

Uко = 11 В;

Iко = 12,6 мА

Iбо = 0,22 мА;

Uбо = 0,4 В;

Определяется амплитуда напряжения выходного сигнала:

Uкm ≤ Uко - Uост = 11 – 1,25 = 9,75 В;

Определяется амплитуда тока выходного сигнала:

Iкm = = = 10,26 мА;

Строится нагрузочная прямая переменного тока. Для этого на семействе выходных характеристик транзистора от координаты точки покоя на оси токов вниз откладывается амплитуда тока Iкм, а от координаты точки покоя вправо – амплитуда напряжения Uкм. Пересечением уравнений Iко – Iкм и Uко + Uкм определяется точка М. Через точку М и точку покоя проводим нагрузочную прямую переменного тока.

Страницы: 1, 2, 3, 4, 5, 6

рефераты
Новости