рефераты рефераты
Главная страница > Курсовая работа: Графы и их представление на ЭВМ  
Курсовая работа: Графы и их представление на ЭВМ
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Графы и их представление на ЭВМ

Пример

С3 — треугольник.

Граф, в котором каждая пара вершин смежна, называется полным. Полный граф с р вершинами обозначается Кр, он имеет максимально возможное число ребер:

Полный подграф (некоторого графа) называется кликой (этого графа).

3.4 Двудольные графы

Двудольный граф (или биграф, или четный граф) — это граф G(V,Е), такой что множество V разбито на два непересекающихся множества V1 и V2 (V1 ÈV2 = V& V1 Ç V2) причем всякое ребро из Е инцидентно вершине из V1 и вершине из V2 (то есть соединяет вершину из V1 с вершиной из V2). Множества V1 и V2 называются долями двудольного графа. Если двудольный граф содержит все ребра, соединяющие множества V1 и V2, то он называется полным двудольным графом. Если | V1 | = m и | V1 | = п, то полный двудольный граф обозначается Km,n


3.5 Направленные орграфы и сети

Если в графе ориентировать все ребра, то получится орграф, который называется направленным. Направленный орграф, полученный из полного графа, называется турниром.

Название «турнир» имеет следующее происхождение. Рассмотрим спортивное соревнование для пар участников (или пар команд), где не предусматриваются ничьи. Пометим вершины орграфа участниками и проведем дуги от победителей к побежденным. В таком случае турнир в смысле теории графов — это как раз результат однокругового турнира в спортивном смысле.

Если в орграфе полустепень захода некоторой вершины равна нулю (то есть d+(v) = 0), то такая вершина называется источником, если же нулю равна полу степень исхода (то есть d-(v) = 0), то вершина называется стоком. Направлен ный орграф с одним источником и одним стоком называется сетью.

3.6 Операции над графами

1. Дополнением графа G1(V1 , Е1) называется граф G(V2 , Е2) рис. 3.6.1, где

Овал: 3Овал: 4Овал: 2Овал: 1V2 : = V1 & Е2 : = Ø Е1 : = {e Î V1 ´ V1 ê e Ï Е1}Овал: 4Овал: 3Овал: 1Овал: 2

G1ØG

Рис 3.6.1 Дополнение


Объединением графов G1(V1 , Е1) и G2(V2 , Е2) (обозначение - G1 È G2, при условии V1 ÇV1 = Æ, Е1 ÇЕ2 = Æ) называется граф G(V,E), рис. 3.6.3

V : = V2 È V1 & Е : = Е1 ÇЕ2


Рис. 3.6.3 Объединение графов

2. Соединением графов G1(V1 , Е1) и G2(V2 , Е2)(обозначение - G1(V1 , Е1) + G2(V2 , Е2), при условии V1 Ç V2 называется граф G(V,E), где

V : = V1 Ç V2 & E : = Е1 È Е2 È {e = (v1, v2) êv1 Î V1 & v2 Î V2}

3. Удаление вершины v из графа G1(V1 , Е1) (обозначение - G1(V1 , Е1) – v, при условии vÎV1) даёт граф G2(V2 , Е2), где

V2 : = V1 \ {v} & E2 : = E1 \ {e = (v1 , v2) ê v1 = v Ú v2 = v}

4. Удаление ребра e из графа G1(V1 , Е1)(обозначение - G1(V1 , Е1)e, при условии e Î E1) даёт граф G2(V2 , Е2), где

V2 : = V1 & E2 : = E1 \ {e}

5. Добавление вершины v в граф G1(V1 , Е1) (обозначение - G1(V1 , Е1) + v, при условии v Ï V1) даёт граф G2(V2 , Е2), где


V2 : = V1 È {v} & E2 : = E1

6. Добавление ребра e в граф G1(V1 , Е1) (обозначение - G1(V1 , Е1) + v, при условии e Ï E1) даёт граф G2(V2 , Е2), где

V2 : = V1 & E2 : = E1 È {e}

7. Стягивание подграфа А графа G1(V1 , Е1) (обозначение - G1(V1 , Е1) / А, при условии А Ì V1) даёт граф G2(V2 , Е2), где

V2 : = (V1 \ A) È {v} &

E2 : = E1 \ {e = (u,w) êu Î A Ú w Î A} È {e = (u,v) êu Î Г(А) \ А}


4. Представление графов в ЭВМ

Следует еще раз подчеркнуть, что конструирование структур данных для представления в программе объектов математической модели — это основа искусства практического программирования. Используется четыре различных базовых представления графов. Выбор наилучшего представления определяется требованиями конкретной задачи. Более того, при решении конкретных задач используются, как правило, некоторые комбинации или модификации указанных представлений, общее число которых необозримо. Но все они, так или иначе, основаны на тех базовых идеях, которые описаны в этом разделе.

4.1 Требования к представлению графов

Известны различные способы представления графов в памяти компьютера, которые различаются объемом занимаемой памяти и скоростью выполнения операций над графами. Представление выбирается, исходя из потребностей конкретной задачи. Далее приведены четыре наиболее часто используемых представления с указанием характеристики п(р, q) — объема памяти для каждого представления. Здесь р - число вершин, а q - число ребер. Указанные представления пригодны для графов и орграфов, а после некоторой модификации также и для псевдографов, мультиграфов и гиперграфов.

1. Матрица смежности. Представление граф с помощью квадратной булевской матрицы, отражающей смежность вершин, называется матрицей смежности,

M : array [1..p, 1..p] of 0..1,

M [i, j] = 1, если вершина vi смежна с вершиной vj

 0, если вершины не vi и vj смежны.

Для матрицы смежности п(р, q) = O(p2).

2. Матрица инциденций. Представление графа с помощью матрицы H : array [1..p, 1..q] of 0..1 (для орграфов H : array [1..p, 1..q] of -1..1), отражающей инцидентность вершин и рёбер, называется матрицей инциденций, где для неориентированного графа

H [i, j] = 1, если вершина vi инцидентна ребру ej,

 0, в противном случае.

а для ориентированного графа

 1, если вершина vi инцидентна ребру ej и является его концом,

 H [i, j] = 0, если вершина vi и ребро ej не инцидентны,

 -1, если вершина vi инцидентна ребру ej и является его началом

Страницы: 1, 2, 3, 4, 5, 6

рефераты
Новости