рефераты рефераты
Главная страница > Курсовая работа: Эффект Пельтье и его применение  
Курсовая работа: Эффект Пельтье и его применение
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Эффект Пельтье и его применение

На рис. 1.3. изменение знака источника меняет направление тока на противоположное: от ПП2 к ПП1 на контакте А и от ПП1 к ПП2 на контакте В. Соответственно меняется знак тепла Пельтье и соотношение между температурами контактов: Qп (А)<0, ТА<ТВ.

Причина возникновения эффекта Пельтье на контакте полупроводников с одинаковым видом носителей тока (два полупроводника n-типа или два полупроводника p-типа) такая же, как и в случае контакта двух металлических проводников. Носители тока (электроны или дырки) по разные стороны спая имеют различную среднюю энергию, которая зависит от многих причин: энергетического спектра, концентрации, механизма рассеяния носителей заряда. Если носители, пройдя через спай, попадают в область с меньшей энергией, они передают избыток энергии кристаллической решетке, в результате чего вблизи контакта происходит выделение теплоты Пельтье (Qп>0) и температура контакта повышается. При этом на другом спае носители, переходя в область с большей энергией, заимствуют недостающую энергию от решетки, происходит поглощение теплоты Пельтье (Qп<0) и понижение температуры.

Эффект Пельтье, как и все термоэлектрические явления, выражен особенно сильно в цепях, составленных из электронных (n - тип) и дырочных (р - тип) полупроводников. В этом случае эффект Пельтье имеет другое объяснение. Рассмотрим ситуацию, когда ток в контакте идет от дырочного полупроводника к электронному (р®n). При этом электроны и дырки движутся навстречу друг другу и, встретившись, рекомбинируют. В результате рекомбинации освобождается энергия, которая выделяется в виде тепла. Эта ситуация рассмотрена на рис. 1.4., где изображены энергетические зоны (ec- зона проводимости,ev- валентная зона) для примесных полупроводников с дырочной и электронной проводимостью.

Рис. 1.4 - Выделение тепла Пельтье на контакте полупроводников p и n-типа

На рис. 1.5. (ec - зона проводимости, ev - валентная зона) иллюстрируется поглощение тепла Пельтье для случая, когда ток идет от n к p-полупроводнику (n ® p).


Рис. 1.5 - Поглощение тепла Пельтье на контакте полупроводников p и n-типа

Здесь электроны в электронном и дырки в дырочном полупроводниках движутся в противоположные стороны, уходя от границы раздела. Убыль носителей тока в пограничной области восполняется за счет попарного рождения электронов и дырок. На образование таких пар требуется энергия, которая поставляется тепловыми колебаниями атомов решетки. Образующиеся электроны и дырки увлекаются в противоположные стороны электрическим полем. Поэтому пока через контакт идет ток, непрерывно происходит рождение новых пар. В результате в контакте тепло будет поглощаться.

Применение полупроводников разных типов в термоэлектрических модулях представлено на рис. 1.6.

Рис. 1.6 - Использование полупроводниковых структур в термоэлектрических модулях

Такая цепь позволяет создавать эффективные охлаждающие элементы.

2. ПРИМЕНЕНИЕ ЭФФЕКТА ПЕЛЬТЬЕ

 

2.1 Модули Пельтье

Объединение большого количества пар полупроводников p- и n-типа позволяет создавать охлаждающие элементы - модули Пельтье сравнительно большой мощности. Структура полупроводникового термоэлектрического модуля Пельтье представлена на рис. 2.1.

Рис. 2.1 - Структура модуля Пельтье

Модуль Пельтье, представляет собой термоэлектрический холодильник, состоящий из последовательно соединенных полупроводников p- и n-типа, образующих p-n- и n-p-переходы. Каждый из таких переходов имеет тепловой контакт с одним из двух радиаторов. В результате прохождения электрического тока определенной полярности образуется перепад температур между радиаторами модуля Пельтье: один радиатор работает как холодильник, другой радиатор нагревается и служит для отвода тепла. На рис. 2.2. представлен внешний вид типового модуля Пельтье.


Рис. 2.2 - Внешний вид модуля Пельтье

Типичный модуль обеспечивает значительный температурный перепад, который составляет несколько десятков градусов. При соответствующем принудительном охлаждении нагревающегося радиатора второй радиатор - холодильник, позволяет достичь отрицательных значений температур. Для увеличения разности температур возможно каскадное включение термоэлектрических модулей Пельтье при обеспечении адекватного их охлаждения. Это позволяет сравнительно простыми средствами получить значительный перепад температур и обеспечить эффективное охлаждение защищаемых элементов. На рис. 2.3. представлен пример каскадного включения типовых модулей Пельтье.

Рис. 2.3 - Пример каскадного включения модулей Пельтье


Устройства охлаждения на основе модулей Пельтье часто называют активными холодильниками Пельтье или просто кулерами Пельтье (рис.2.4.).

Рис.2.4 - Внешний вид кулера с модулем Пельтье

Главная характеристика термоэлектрического охлаждающего устройства – это эффективность охлаждения:

Z=a2/(rl),

где a – коэффициент термоэдс;

r – удельное сопротивление;

l – удельная теплопроводность полупроводника.

Параметр Z – функция температуры и концентрации носителей заряда, причем для каждой заданной температуры существует оптимальное значение концентрации, при которой величина Z максимальна. Введение в полупроводник тех или иных примесей – основное доступное средство изменять его показатели (a, r, l) в желательную сторону.

Использование модулей Пельтье в активных кулерах делает их существенно более эффективными по сравнению со стандартными типами кулеров на основе традиционных радиаторов и вентиляторов. Однако в процессе конструирования и использования кулеров с модулями Пельтье необходимо учитывать ряд специфических особенностей, вытекающих из конструкции модулей, их принципа работы, архитектуры современных аппаратных средств компьютеров и функциональных возможностей системного и прикладного программного обеспечения.

 

2.2 Особенности эксплуатации модулей Пельтье

Пельтье, применяемые в составе средств охлаждения электронных элементов, отличаются сравнительно высокой надежностью, и в отличие от холодильников, созданных по традиционной технологии, не имеют движущихся частей. И, как это отмечалось выше, для увеличения эффективности своей работы они допускают каскадное использование, что позволяют довести температуру корпусов защищаемых электронных элементов до отрицательных значений даже при их значительной мощности рассеяния. Также модуль является обратимым, т.е. при смене полярности постоянного тока горячая и холодная пластины меняются местами.

Однако кроме очевидных преимуществ, модули Пельтье обладает и рядом специфических свойств и характеристик, которые необходимо учитывать при их использовании в составе охлаждающих средств. Некоторые из них были уже отмечены, но для корректного применения модулей Пельтье требуют более детального рассмотрения.

К важнейшим характеристикам относятся следующие особенности эксплуатации:

§  Модули Пельтье, выделяющие в процессе своей работы большое количество тепла, требуют наличия в составе кулера соответствующих радиаторов и вентиляторов, способных эффективно отводить избыточное тепло от охлаждающих модулей.

§  Термоэлектрические модули отличаются относительно низким коэффициентом полезного действия (кпд) и, выполняя функции теплового насоса, они сами являются мощными источниками тепла. Использование данных модулей в составе средств охлаждения электронных комплектующих компьютера вызывает значительный рост температуры внутри системного блока, что нередко требует дополнительных мер и средств для снижения температуры внутри корпуса компьютера. В противном случае повышенная температура внутри корпуса создает трудности для работы не только для защищаемых элементов и их систем охлаждения, но и остальным компонентам компьютера.

§  Модули Пельтье являются сравнительно мощной дополнительной нагрузкой для блока питания. Потребляемый ими ток превышает 6А. Слишком тонкие провода питания могут не выдержать такой силы тока. С учетом значения тока потребления модулей Пельтье величина мощности блока питания компьютера должна быть не менее 250 Вт.

-   Модуль Пельтье, в случае выхода его из строя, изолирует охлаждаемый элемент от радиатора кулера. Это приводит к очень быстрому нарушению теплового режима защищаемого элемента и скорому выходу его из строя от последующего перегрева.

-   Термоэлектрические модули соответствуют техническим данным в течение 2-х лет с даты изготовления при соблюдении потребителем условий хранения и эксплуатации. Срок хранения и эксплуатации - 15 лет с момента приемки. Из опыта известно, что если только модуль не будет нагреваться до температуры плавления олова, он прослужит очень долго.

-   Подаваемое на модуль напряжение определяется количеством пар ветвей в модуле. Наиболее распространенными являются 127-парные модули, величина максимального напряжения для которых составляет примерно 16 В. На эти модули обычно подается напряжение питания 12 В. Такой выбор напряжения питания в большинстве случаев является оптимальным и позволяет обеспечить, с одной стороны, достаточную мощность охлаждения, а с другой стороны, достаточную экономичность. При повышении напряжения питания более 12 В увеличение холодильной мощности будет слабым, а потребляемая мощность будет резко увеличиваться. При понижении напряжения питания экономичность будет расти, холодильная мощность будет уменьшаться, но линейно, что очень удобно для организации плавного регулирования температуры. Для модулей с числом пар ветвей отличным от 127, необходимо учитывать особенности конкретного устройства, прежде всего, условия теплоотвода с горячей стороны, и возможности источников питания.

Страницы: 1, 2, 3, 4

рефераты
Новости