рефераты рефераты
Главная страница > Курсовая работа: Цифровая обработка сигналов  
Курсовая работа: Цифровая обработка сигналов
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Цифровая обработка сигналов

Один из таких методов – упорядоченное псевдотонирование. В этом методе исходное изображение разбивается на небольшие блоки одинакового размера (например, 3x3). Затем в каждом блоке находится средняя яркость изображения. В соответствии с этой средней яркостью выбирается количество белых пикселей в соответствующем блоке получаемого монохромного изображения. Обычно эти белые пиксели упорядочиваются в соответствии с некоторым регулярным шаблоном (рис. 15).

Существуют другие алгоритмы достижения нужной концентрации белых пикселей в получаемом монохромном изображении. Например, существует класс алгоритмов, которые достигают этого в 2 стадии. Сначала к изображению добавляется случайный шум необходимой амплитуды, а затем применяется порог. Такие алгоритмы называют диттерингом (dithering).

Шум представляет собой некий достаточно случайный сигнал, не зависящий от изображения. Например, белый шум – это просто последовательность случайных чисел с математическим ожиданием 0. Спектр такого шума приблизительно равен константе на всех частотах (в пределах половины частоты дискретизации). Последовательные отсчеты такого шума не коррелируют между собой.

Существуют другие виды шума. Например, у розового шума энергия обратно пропорциональна частоте (в определенном рассматриваемом диапазоне частот). Другими словами, амплитуда его гармоник падает на 3 дБ при удвоении частоты. У голубого шума энергия наоборот растет с частотой. Существуют и другие виды шума, однако определения для них могут быть различны в разных областях.

Будем называть ошибкой квантования изображение, равное разности исходного и псевдотонированного изображений.

При псевдотонировании изображений стремятся добиться того, чтобы спектр изображения-ошибки по возможности не содержал низкочастотных и среднечастотных компонент. В этом случае ошибка будет менее заметна человеческому глазу. Например, при диттеринге розовым шумом спектр ошибки тоже близок к светло-розовому, и результирующее изображение выглядит значительно искаженным (рис. 15). При диттеринге белым шумом спектр ошибки белый. Поэтому результирующее изображение выглядит лучше. При диттеринге с диффузией ошибки спектр ошибки получается близок к голубому шуму, т.е. содержит мало низкочастотных компонент. В результате получается приятное глазу изображение.

Нетрудно видеть, что просто диттеринг голубым шумом не приводит к желаемому результату, т.к. ошибка квантования при этом имеет спектр, содержащий значительное количество низкочастотных и среднечастотных компонент. Для избавления от них нужно применить рекурсивный фильтр. Этот метод псевдотонирования называется диффузией ошибки (error diffusion). Его идея в том, что ошибка квантования, возникшая при квантовании данного пикселя, распространяется с обратным знаком на соседние пиксели и таким образом как бы компенсируется.


3.5 Выравнивание освещенности изображений

Часто некоторые участки на изображении бывают слишком темными, чтобы на них можно было что-то разглядеть.

Если прибавить яркости ко всему изображению, то изначально светлые участки могут оказаться совсем засвеченными. Чтобы улучшить вид изображения в таких случаях, применяется метод выравнивания освещенности.

Этот метод не является линейным, т.е. не реализуется линейной системой. Действительно, рассмотрим модель типичную освещенности для фотографии. Фотографируемый пейзаж обычно освещен по-разному в разных точках. Причем обычно освещенность меняется в пространстве достаточно медленно.

Мы хотим, чтобы все детали на фотографии были освещены более однородно, но при этом оставались достаточно контрастными друг относительно друга.

А на реальной фотографии получается произведение той картинки, которую мы хотим видеть и карты освещенности. Там где освещенность близка к нулю, все предметы и детали тоже близки к нулю, то есть практически невидимы.

Поскольку освещенность меняется в пространстве достаточно медленно, то можно считать ее низкочастотным сигналом. Само же изображение можно считать в среднем более высокочастотным сигналом. Если бы в процессе фотографии эти сигналы складывались, то их можно было бы разделить с помощью обычного фильтра.

Например, применив ВЧ-фильтр, мы бы «избавились от перепадов освещенности» (НЧ-сигнала), а оставили «само изображение». Но поскольку эти сигналы не складываются, а перемножаются, то избавиться от неравномерностей освещенности простой фильтрацией не удастся.

Для решения таких задач применяется гомоморфная обработка. Основной метод гомоморфной обработки заключается в сведении нелинейной задачи к линейной с помощью каких-либо преобразований. Например, в нашем случае можно свести задачу разделения перемноженных сигналов к задаче разделения сложенных сигналов. Для этого нужно взять логарифм от произведения изображений.

Логарифм от произведения равен сумме логарифмов сомножителей. Если учесть, что логарифм от НЧ-сигнала остается НЧ-сигналом, а логарифм от ВЧ-сигнала остается ВЧ-сигналом, то мы свели задачу разделения произведения сигналов к задаче разделения суммы НЧ- и ВЧ-сигналов. Очевидно, эту задачу можно решить с помощью ВЧ-фильтра, который удалит из суммы сигналов низкие частоты. После этого останется только взять от полученного сигнала экспоненту, чтобы вернуть его к исходному масштабу амплитуд.

ВЧ-фильтр можно реализовать следующим образом. Сначала к изображению применяется операция размытия (НЧ-фильтр), а потом из исходного изображения вычитается размытое.

Наилучший радиус размытия зависит от конкретного изображения. Можно начать эксперименты с радиуса порядка десяти пикселей.

Обычно для размытия изображения применяется двумерный гауссовский фильтр.

Непосредственное вычисление двумерной свертки с таким ядром потребует огромных вычислений даже при сравнительно небольшом размере ядра. Однако приведенное гауссово ядро обладает свойством сеперабельности.

Это означает, что эквивалентного эффекта можно достичь, отфильтровав сначала все строки изображения одномерным гауссианом, а затем отфильтровав все столбцы полученного изображения таким же одномерным гауссианом.

Полученный от выравнивания освещенности эффект может оказаться слишком сильным (темные области станут по яркости такими же, как и светлые). Чтобы уменьшить эффект, можно просто смешать обработанное изображение с исходным в определенной пропорции.

 

3.6 Другие применения

Улучшение изображений и художественные эффекты

Для улучшения изображений и создания различных художественных эффектов часто применяется фильтрация. Например, для придания изображению резкости можно воспользоваться фильтром, который усиливает сигнал на высоких частотах. Существуют фильтры для выделения или нахождения границ в изображении, размытия, направленного смазывания изображений, создания различных эффектов, таких как акварель, тиснение.

Поиск фрагментов в изображениях

Для поиска фрагментов в изображениях применяется двумерная корреляция. Сигналом для поиска является изображение, а искомым сигналом – искомый фрагмент изображения. Эффективное вычисление корреляции стало возможным благодаря двумерному БПФ.

Компрессия изображений

Методы цифровой обработки сигналов позволяют достаточно эффективно сжимать изображения в частотной области. Например, алгоритм JPEG действует следующим образом (упрощенно). Изображение разбивается на фрагменты размером 8x8 пикселей, и каждый фрагмент переводится в частотную область. После этого в каждом фрагменте те высокочастотные составляющие, амплитуда которых мала, выкидываются, а все остальные – кодируются. Ясно, что для тех областей изображения, где яркость изменяется, не очень быстро (а таких большинство), высокочастотных компонент почти нет. Таким образом, удается выкинуть из спектра существенную часть не очень важной информации. В JPG-файле кодируются оставшиеся «существенные» амплитуды.

В алгоритме JPEG применяется модификация ДПФ: дискретное косинусное преобразование (ДКП). ДКП от двумерного сигнала можно вычислить, отразив четным образом сигнал относительно нулевой точки и вычислив двумерное ДПФ полученного сигнала с двукратными размерами. В полученном спектре будут содержаться только «косинусные» коэффициенты.

Восстановление изображений

При съемке движущегося объекта неподвижной камерой полученное изображение получается смазанным. Если знать параметры движения объекта, то можно построить ядро свертки, которое камера «применила» к снимаемому сигналу. Затем с помощью метода деконволюции можно в значительной степени устранить эффект размытия.

Иногда при съемке камера может вносить в изображение интерференцию – периодический муар, накладываемый на изображение. Часто оказывается, что спектр этой интерференции состоит из одной – двух гармоник. В этом случае ее можно эффективно удалить с помощью фильтра, который подавляет заданные частоты (notch filter).


Заключение

Работая над данным обзором, по долгу службы что называется, мне пришлось посетить ряд отечественных фирм, специализирующихся на создании аппаратных и программных средств обработки цифровых сигналов. Впечатления – самые приятные. Уровень разработок – мировой, общее ощущение от фирм – как во вложениях хорошего хозяина: прочность, ухоженность и стабильность, настроение – рабочее, никакого нытья и уныния!

Иными словами, цифровая обработка – это одна из перспективных областей высоких наукоемких технологий – high tech – привлекательная для приложения сил. В исторической ретроспективе, лет этак через 20, в "Российской компьютерной энциклопедии – 2020" может быть напишут: "В конце ХХ века, с падением "железного занавеса" и началом перехода к рыночным отношениям, компьютерная промышленность России пережила глубокий кризис. Однако после известных событий августа 1998 года начался бурный рост прикладных направлений, связанных с разработкой промышленных контроллеров, цифровых средств связи и мультимедийных устройств для персональных компьютеров".

Страницы: 1, 2, 3, 4, 5

рефераты
Новости