рефераты рефераты
Главная страница > Курсовая работа: Автоматизированная система управления климатом в тепличных хозяйствах  
Курсовая работа: Автоматизированная система управления климатом в тепличных хозяйствах
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Автоматизированная система управления климатом в тепличных хозяйствах

ТХ AS-B872-200
Тип Ц/А; 10В, ± 5В, 0…10В, 0…5В
Количество каналов 4
Диапазон входного напряжения  -10…10В, -5…5В, 0…5В, 0…10В
Разрядность 12 Бит
Точность 0.1% при 25С
0.17% при 0-60С
Линейность 0-60С, ±1 МЗР
Частота обновления <1мс все 4 канала
Питание
 +5 В 750мА
 +4.3 В 5мА
 5В 0мА
Габариты
 занимаемое место 1 разъем
 Вес 1.4 кг

9.9 Консольный насос К 200-150-250/4-5

Консольный насос представляет собой, с точки зрения гидравлики, характерный тип центробежного насоса, рабочим органом которого является центробежное колесо.

Центробежное колесо состоит из двух дисков, между которыми, соединяя их в единую конструкцию, находятся лопасти, плавно изогнутые в сторону, противоположную направлению вращения колеса.

При вращении колеса на каждую частицу жидкости, находящуюся внутри колеса, действует центробежная сила, прямо пропорциональная расстоянию частицы от центра колеса и квадрату угловой скорости вращения колеса.

Под действием этой силы жидкость выбрасывается в напорный трубопровод из рабочего колеса, в результате чего в центре колеса создается разряжение, а переферийной его части - повышенное давление.

Движение жидкости по всасывающему трубопроводу происходит вследствие разности давлений над свободной поверхностью жидкости в приемном резервуаре и в центральной области колеса, где имеется разрежение.

В насосах типа К подвод крутящего момента от вала электродвигателя на вал насоса происходит через упругую муфту. В насосах типа КМ рабочее колесо установлено на конце удлиненного вала электродвигателя.

Назначение и технические характеристики насосных частей К и КМ идентичны, при этом насосные агрегаты типа КМ имеют меньшие габаритные размеры и массу.

Технические характеристики двигателя:

-  мощность двигателя – 30 кВт;

-  номинальная подача – 315 м3/ч;

-  частота вращения – 1450 об/мин;

-  номинальный напор – 20 м.


10. Выбор и описание контура регулирования

Схема используемого цифрового ПИД – регулятора представлена в соответствующем документе (структурная схема – на рисунке 10.1). На его вход подаются два сигнала: задающий, и сигнал обратной связи, приведенные к условному максимуму в 5 В. Для выделения ошибки, сигнал ОС предварительно инвертируется, после чего уже идет на сумматор. Ошибка проходит на три параллельно соединенных усилителя, отвечающих за отработку пропорционального, интегрального и дифференциального коэффициентов усиления.

Рисунок 10.1 – Структурная схема цифрового ПИД – регулятора

Для реализации схем задержек типа  и  используются развязки, изображенные на рисунке 10.2 (схемы соответствуют порядку следования передаточных функций в тексте).

В качестве звена задержки используется интегральная микросхема, позволяющая задерживать аналоговый сигнал, дискретный, представляемый в последовательном или параллельном виде. Микросхема также позволяет программно менять время задержки.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

рефераты
Новости