рефераты рефераты
Главная страница > Дипломная работа: Разработка компонентов инфраструктуры сервисного обслуживания встроенной памяти гибкой автоматизированной системы на кристалле  
Дипломная работа: Разработка компонентов инфраструктуры сервисного обслуживания встроенной памяти гибкой автоматизированной системы на кристалле
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Разработка компонентов инфраструктуры сервисного обслуживания встроенной памяти гибкой автоматизированной системы на кристалле

Таким образом, появились все предпосылки к реальному созданию коммерческих версий ИС нового поколения, сочетающих в себе преимущества традиционных заказных изделий класса ASIC, микросхем программируемой логики и интегрирующих широкий диапазон системных ресурсов для большей функциональности. Новые микросхемы был отнесены к группе изделий системного уровня интеграции SLI (System Level Integration), и до настоящего времени уровень SLI был реализован лишь в заказных микросхемах с фиксированной архитектурой, потому что это было единственным приемлемым технологическим решением.

Под интеграцией различных системных ресурсов здесь не следует понимать механистическое объединение отдельных систем, которыми могут быть (пусть и сколь угодно сложные, но в то же время типовые, стандартные) микропроцессоры, блоки памяти и периферийные узлы. Возможность сочетания различных типов электронных ячеек на площади одного кремниевого кристалла высвобождает новые потребительские качества выпускаемых микросхем, позволяет целенаправленно ориентировать новую продукцию на требуемые сегменты рынка, обеспечивая производителям современной электронной аппаратуры техническую и экономическую выгоду.

Реализованная на практике идея SLI оказалась настолько богатой, что сразу же нашла широкий отклик у многих мировых лидеров в производстве микроэлектронных изделий. Интеграция всех основных системных узлов на одной системно-ориентированной микросхеме обеспечивает повышение производительности, снижение энергопотребления, уменьшение цены конечного изделия в целом и позволяет выпускать малогабаритную продукцию. Все эти преимущества особенно важны в области ГАС, с точки зрения телекоммуникационных приложений портативной аппаратуре их сервисного обслуживания, а также в сетевых приложениях. Изделия нового поколения, выполняемые по идеологии SLI, стали называть "система на кристалле" – System on a Chip или SoC. И основным препятствием на пути активного внедрения микросхем SoC в массовое производство вплоть до начала 2000-х годов, были лишь технологические ограничения полупроводниковой промышленности.

Революционные изменения в технологии производства микроэлектронных изделий дали возможность комбинировать на одном кремниевом кристалле несколько разнородных типов электронных ячеек (CMOS+Flash, CMOS+EEPROM, SiGe/BiCMOS). Были выпущены первые интегральные заказные микросхемы ASIC, реализующие как цифровую, так и аналоговую обработку данных, в том числе и для радиочастотного диапазона).

Совершенствование технологического процесса позволило постоянно увеличивать количество интегрированных транзисторов в пределах одной и той же площади кремниевого кристалла. Тем не менее, оказалось невозможным полноценно использовать все преимущества этого увеличения без значительного удлинения временного цикла разработки проектов, особенно в связи с постоянно увеличивающейся сложностью последних.

Здесь же впервые встала и проблема дефицита высококвалифицированного инженерного труда, так как разработать современное заказное изделие микроэлектроники в кратчайшие сроки – очень непросто. Существенно обострилось и ранее дремавшее противоречие: с одной стороны, цены на конечные изделия должны быть как можно меньше; с другой – сложность микросхем должна быть как можно выше, а количество одновременно выполняемых ими функций – как можно больше. В значительной степени этому способствовало смещение рынка потребления в сторону сложной продукции массового спроса: Application Specific Standard Products (ASSP), а также активное влияние рынка телекоммуникаций, который развивается чрезвычайно быстро и требует реализации все более сложных и изощренных механизмов кодирования, передачи и обработки разнородных данных.

Таким образом, на сегодняшний день, сформировались все предпосылки к реальному созданию коммерческих, доступных версий микросхем SoC.

Многие фирмы-производители проводят, в настоящее время, активные исследования перспективности создания микросхем класса SoC различных архитектур. Несколько компаний уже реализовало свои идеи в конкретные семейства серийно выпускаемых ИС и продолжают работу в этом направлении. В результате можно сказать, что на рынок микроэлектроники действительно вышло новое поколение микросхем с возможно большим и перспективным будущим. Говорится об этом поколении уже много и всеми по-разному. При этом, к сожалению, нечетко поставлены акценты в терминологии, по-разному воспринимается сама концепция системы на кристалле, различаются подходы как к проектированию и производству самих ИС, так и к построению конечных проектов на этой новой элементной базе.

1.3 Номенклатура выпускаемой памяти на кристалле

Сформируем перечень различных микросхем памяти, обладающей уникальной программируемой технологией производства систем памяти на одном кристалле.

В настоящее время, разрабатываются и производятся, в промышленных масштабах, следующие виды микросхем памяти:

– EPROM – память с ультрафиолетовым стиранием и с однократным программированием, в том числе стандартные микросхемы памяти типа OTP и UV EPROM , усовершенствованные микросхемы памяти OTP и UV EPROM семейства Tiger Range, микросхемы нового семейства памяти FlexibleROM, разработаного для замены MaskROM, а также микросхемы памяти PROM и RPROM компании WSI (США), вошедшей в состав ST ;

EEPROM и SERIAL NVM (последовательная энергонезависимая долговременная память) – из последовательной перепрограммируемой энергонезависимой памяти выпускаются микросхемы памяти EEPROM с различным шинным интерфейсом, микросхемы последовательной Flash-памяти, стандартные микросхемы памяти специального назначения (ASM ) и бесконтактные (CONTACTLESS MEMORIES ) микросхемы памяти;

– Flash-память типа NOR – в производстве находятся микросхемы Flash-памяти: индустриального стандарта с различным питанием, с расширенной архитектурой для различных областей применения, микросхемы с разнородной памятью и микросхемы Flash-памяти семейства " LightFlash ";

– Flash-память типа NAND – новое направление в производстве микросхем памяти;

– SRAM – асинхронные маломощные микросхемы памяти типа SRAM с различным питанием и быстродействием;

– NVRAM – имеются различные решения для SRAM с аварийным батарейным питанием, которые классифицируются как супервизоры, Zeropower, Timekeeper и часы реального времени с последовательным интерфейсом (Serial RTC );

– PSM – в соответствие со стратегическим направлением создания «систем на кристалле», разрабатываются и производятся микросхемы программируемых систем памяти, которые обеспечивают комплексное системное решение памяти для микроконтроллеров и разработок на сигнальных процессорах (DSP);

– Smartcard – в наличии большой ассортимент микросхем для Smartcard и систем обеспечения безопасности.

Большое число видов и типов микросхем памяти, производимых сегодня, не позволяет осуществить их подробное освещение в рамках одной дипломной работы. Поэтому здесь я попытаюсь остановиться только на основных особенностях некоторых семейств микросхем памяти, представленных на рис. 1.1.

Рисунок 1.1 – Виды и основные серии выпускаемых микросхем SoC-памяти


2. разработка компонентов инфраструктуры сервисного обслуживания SoC-памяти ГАС

2.1 Принципы создания сервисного обслуживания систем на кристалле

Одной из важных и первостепенных задач микроэлектроники, является создание универсальных микропроцессорных SoC-систем на кристалле. Такие сложные ИС класса SoC, обычно, состоят из трех основных цифровых системных блоков:

– процессор,

– память,

– логика.

Процессорное ядро реализует поток управления, когда каждой управляющей программой однозначно устанавливаются последовательности выполнения операций обработки данных, что позволяет задавать один из возможных алгоритмов работы всей ИС. Память используется по ее прямому назначению – хранение кода программы процессорного ядра и данных. И, наконец, логика используется для реализации специализированных аппаратных устройств обработки и прохождения данных, состав и назначение которых определяются конечным приложением – потока данных.

Реальная система на кристалле содержит как минимум все три перечисленных блока, что исключает применение многочисленных отдельных ИС и реализацию интерфейсов связи между ними. Причем однокристальное конфигурируемое или программируемое решение, очевидно, является здесь более предпочтительной альтернативой, так как допускает оперативное изменение своей внутренней аппаратной структуры и конечного предназначения как на этапе производства, так и в полевых условиях, непосредственно в проекте. Такие ИС были отнесены к группе изделий системного уровня интеграции, но получили другое название – Configurable System on a Chip или CSoC. Поскольку термин CSoC не стандартизован, то существуют и другие названия изделий этого класса - System on Programmable Chip (SoPC), Programmable System on a Chip (PSoC) или просто SoC, что определяется вкусом и желаниями конкретного производителя микросхем. В данном разделе, будем придерживаться термина CSoC.

Конфигурируемый процессор реализует изделие, которое может быть "подстроено" для конкретного использования в потоке управления. Например, изменяемый набор инструкций процессорного ядра, добавление/исключение аппаратного умножения, программируемое количество состояний внутреннего конвейера и т.д.

Всё это может быть оптимизировано для каждого конечного приложения. Конфигурируемые процессоры предоставляют пользователям необходимые черты и особенности без дополнительных капиталовложений.

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости