рефераты рефераты
Главная страница > Дипломная работа: Распределенная автоматизированная система управления  
Дипломная работа: Распределенная автоматизированная система управления
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Распределенная автоматизированная система управления

После подачи питания ведущему шины доступны только приборы, подключённые к основному стволу сети. Для взаимодействия с остальными устройствами ведущий шины должен изучить топологию сети. Поэтому на первом этапе выполняется анализ только адресуемых ключей в сети. Начиная с основного ствола, ведущий шины последовательно опрашивает и записывает регистрационные номера всех адресуемых ключей. Затем найденные ключи последовательно открываются, и происходит дальнейший опрос ветвей второго уровня. Обнаруженные на них ключи также регистрируются и по очереди открываются. После этого становится возможным опрос ветвей третьего уровня. Процедура продолжается до окончательного построения топологии сети в памяти контроллера. На следующем этапе ведущий идентифицирует оставшиеся приборы. Для этого, опираясь на изученную топологию переключателей сети, он последовательно открывает все ветви и записывает регистрационные номера обнаруженных приборов. После построения точной топологии сети MicroLAN становится возможен быстрый доступ к каждому прибору. Ведущий открывает все ключи на пути к нему, отменяя при этом выбор всех остальных приборов на линии.

3.4. Выбор топологии сети

Основой архитектуры сетей MicroLAN, является топология общей шины, когда каждое из устройств подключено непосредственно к единой магистрали, без каких-либо каскадных соединений или ветвлений. При этом в качестве базовой используется структура сети с одним ведущим или мастером и многочисленными ведомыми. Конфигурация любой сети MicroLAN может произвольно меняться в процессе ее работы, не создавая помех дальнейшей эксплуатации и работоспособности всей линии в целом, если при этих изменениях соблюдаются основные принципы организации однопроводной шины. Эта возможность достигается благодаря присутствию в протоколе 1-Wire интерфейса специальной команды поиска ведомых устройств (Поиск ПЗУ), которая позволяет быстро определить новых участников информационного обмена. Стандартная скорость отработки такой команды составляет около 75 узлов сети в секунду. Часто при организации больших однопроводных сетей, с целью удобства проводки линии связи, уменьшения ее протяженности или снижения электрической нагрузки на линии благодаря уменьшению одновременно работающих на ней устройств, необходимо обеспечить древовидную структуру 1-Wire линии. Для этого используют ветвления сетей MicroLAN одного или нескольких уровней. Основным элементом при построение таких ветвей является обычный адресуемый ключ типа DS2406P, который обеспечивает ветвление благодаря коммутации возвратного провода однопроводной линии.

Общая схема подключения устройств с помощью однопроводной сети изображена на рис. 3.1. Одна или несколько однопроводных сетей подключаются к COM портам компьютера с помощью контроллера. К контроллеру подключается основная линия однопроводной сети, максимальная длина которой 300 метров (при необходимости линию можно вынести на несколько километров с помощью двух преобразователей RS232-485). Реальная длина зависит от уровня помех и от количества устройств. К основной линии подключаются датчики температуры и ключи дискретного ввода/вывода с помощью отводов длиной не более 3 метров.

Рис. 3.1. Общая структура сети MicroLAN.

В наиболее удалённой точке каждой ветви подключается микросхема iButton™, служащая меткой ветви. Метка позволяет контролировать прохождение электрического сигнала и целостность ветви. Для обеспечения надёжности передачи по сети MicroLAN в условиях нестабильного электрического контакта передача осуществляется в виде отдельных пакетов данных. В информационной однопроводной сети тепличного комбината Каждый пакет завершается контрольной суммой, что позволяет ведущему шины сразу регистрировать ошибки и принимать меры для повторной передачи.

Благодаря наличию в составе любого устройства, снабженного сетевой версией 1-Wire интерфейса, индивидуального уникального адреса (отсутствие совпадения адресов для приборов, когда-либо выпускаемых Dallas Semiconductor, гарантируется самой фирмой-производителем), сеть MicroLAN имеет практически неограниченное адресное пространство. При этом каждый из таких приборов сразу готов к использованию в составе сетей MicroLAN, без каких-либо дополнительных аппаратно-программных модификаций. На рис. 3.2 приведена структура однопроводной сети АСУ тепличного комбината, где ML97U009 - мастер лини (см. пункт 3.7) ML00-12-035 блок питания (см. пункт 3.11), ML02A – метка линии (см. пункт 3.10), ML09 – адресуемый ключ (см. пункт 3.9), ML38Н – устройство измерения влажности и температуры (см. пункт 3.8), Z86E08 – микроконтроллер нижнего уровня АСУ тепличного комбинта.

Рис. 3.2. Структура однопроводной сети АСУ тепличного комбината.

3.5. Принципы работы однопроводной сети MicroLAN

Компоненты однопроводных сетей являются самотактируемыми полупроводниковыми устройствами, в основе обмена информацией между которыми лежит управление изменением длительности временных интервалов импульсных сигналов в однопроводной среде и их измерение. Передача сигналов, для 1-Wire интерфейса, асинхронная и полудуплексная, а вся информация циркулирующая в сети воспринимается абонентами либо как команды, либо как данные. Команды сети генерируются мастером и обеспечивают различные варианты поиска и адресации ведомых устройств, определяют активность на линии без непосредственной адресации отдельных компонентов, управляют обменом данными в сети.

 

3.6. Программное обеспечение сети MicroLAN

Особенно привлекательным качеством технологии MicroLAN является исключительная простота настройки, отладки и обслуживания сети практически любой конфигурации, построенной по этому стандарту. Действительно, для начала работы достаточно любого персонального компьютера, недорогого стандартного адаптера 1-Wire линии, а также свободно распространяемого фирмой Dallas Semiconductor программного пакета iButton-TMEX Viewer. Пакет iButton TMEX-Viewer позволяет с максимальным комфортом для разработчика идентифицировать любое из ведомых однопроводных устройств на линии MicroLAN и проверить в полном объеме правильность его функционирования в составе всей сети. Так же фирмой Dallas Semiconductor свободно распространяется профессиональный программный пакет разработчика iButton-TMEX SDK, являющийся универсальным средством для профессиональных программистов, который значительно упрощает процесс создания программ для обслуживания устройств с 1-Wire интерфейсом, подключенных через стандартные типы адаптеров к персональным компьютерам РС и некоторым типам карманных компьютеров. Он содержит комплект отлаженных драйверов и утилит для реализации полномасштабного однопроводного протокола. В качестве среды взаимодействия с разработчиком пакет iButton-TMEX SDK использует специальный стандартизованный программный интерфейс API. Кроме того, с fttp-сервера кампании Dallas Semiconductor свободно доступен ряд примеров реализации 1-Wire-протокола для микропроцессора Z86E08 компании Zilog а также готовые библиотеки функциональных программных модулей однопроводного интерфейса для различных программных платформ. Z86E08 входит в состав распределенной микроконтроллерной системы стабилизации микроклимата в теплицах, представляющей собой нижний уровень АСУ тепличного комбината.

3.7. Выбор ведущего адаптера 1-Wire линии

Некоторые виды адаптеров, которые позволяют наделить любой персональный компьютер РС возможностью обслуживать в качестве мастера сеть MicroLAN, выпускаются самой фирмой Dallas Semiconductor. К ним относятся адаптеры для параллельного порта типа DS1410E или для последовательных COM портов типа DS9097E, DS9097U. Часто в качестве ведущего однопроводной шины выступает не компьютер, а простейший универсальный микроконтроллер. Для организации его сопряжения с сетью MicroLAN используются различные программно-аппаратные методы. От простейшего, когда управляющая программа контроллера полностью реализует протокол 1-Wire интерфейса на одном из своих двунаправленных выводов, который подключен к однопроводной линии, до вариантов, позволяющих высвободить значительные ресурсы контроллера, благодаря использованию специализированных микросхем сопряжения с сетью MicroLAN. Такие микросхемы подключаются к контроллеру, играющему роль ведущего шины, через периферийные узлы ввода/вывода, входящие в состав любого универсального микроконтроллера.

В нашем случае, так как АСУ тепличного комбината подразумевает наличие персонального компьютера, в качестве ведущего мы будем использовать адаптер последовательного COM порта ML97U-009.

Адаптер ML97U-009 (см. рис. 3.2) предназначен для организации на базе персонального компьютера мастера, обеспечивающего обслуживание стандартных однопроводных устройств, подключаемых к 1-Wire-сети, построенной по технологии фирмы Dallas Semiconductor Corp., на базе последовательного СОМ-порта персонального компьютера. В основе прибора лежит микросхема DS2480B фирмы Dallas Semiconductor Corp., являющаяся универсальным драйвером для сопряжения 1-Wire-линии со стандартным последовательным портом. ML97U-009 сохраняет все электрические характеристики и функциональные особенности установленного в нем драйвера. ML97U-009 является модификацией адаптера DS9097U-009 фирмы Dallas Semiconductor Corp., используя в качестве встроенной метки прибор DS2502 (групповой код 09Н + 1024 бит однократно программируемой памяти EPROM) [9].

В качестве конструктива устройства ML97U-009 использована стандартная розетка разъема DB-9F с вмонтированным в корпус класса GC приемным разъемом-гнездом типа TJ6P4C (RJ-11), предназначенная для сопряжения 9-пинового последовательного СОМ-порта персонального компьютера с телефонной линией. Внутри корпуса разъема установлена печатная плата, содержащая все компоненты, необходимые для сопряжения последовательного порта с информационной 1-Wire-линией. Подключение однопроводной линии к печатной плате устройства обеспечивается с помощью стандартного приемного разъема-вилки типа TJ6P4C (RJ-11). Адаптер ML97U-009 имеет отдельный узел, выполняющий качественное преобразование напряжения высокого уровня (12В), снимаемого с отдельных, не задействованных для обмена информацией логических выводов СОМ-порта, до уровней (+5В), необходимых встроенным функциональным компонентам схемы прибора.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

рефераты
Новости