рефераты рефераты
Главная страница > Дипломная работа: Проектирование устройства передачи данных по радиоканалу  
Дипломная работа: Проектирование устройства передачи данных по радиоканалу
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Проектирование устройства передачи данных по радиоканалу

Контроллер прямого доступа в байтовую память (BDMA) позволяет осуществлять загрузку и сохранение команд программы и данных, используя пространство байтовой памяти. Схема BDMA способна обращаться к пространству байтовой памяти в то время, как процессор работает и захватывает только один цикл DSP для перемещения 8-, 16- или 24-разрядного слова.

IAD0 ... IAD15 - 16-ти разрядная мультиплексированная шина данных/адреса порта IDMA.

Порт прямого доступа к внутренней памяти (IDMA) процессора ADSP-2181 является одним из новых устройств, существенно упрощающих построение интерфейса с HOST-процессором.

Рис. 3.1.2. Интерфейс работы порта IDMA с HOST-процессором.

Четыре входа управления IDMA предназначены для:

IS - выбор порта;

IAL - запись адреса ячейки памяти;

IRD - чтения данных через порт;

IWR - запись данных ;

IACK - Сигнал подтверждения доступа. Определяет завершение операций чтения/записи и готовность IDMA к следующей операции.

BMODE и MMAP

Выводы процессора BMODE и MMAP определяют режим загрузки и распределение (карту) памяти DSP. Для загрузки через внешнюю память BMODE=0 и MMAP=0. Загрузка состоит из следующих операций:

• Сброс процессора сигналом RESET

• Загрузка в Programm Memory и Data Memory кодов программы и данных, исключая ячейку PM(0x0000).

• Запись слова в ячейку PM(0x0000) для запуска загруженной программы.

IRQ2, IRQL1, IRQL0 и IRQE. TFS1/IRQ1, RFS1/IRQ0.

Аппаратные входы прерываний. При подаче на них низкого уровня сигнала управление передается соответствующей подпрограмме

Таблица 3.1 - Таблица прерываний.

RESET - при получении низкого уровня сигнала передается управление подпрограмме инициализации DSP. При этом происходит повторная загрузка программы из внешней памяти в DSP.

PWD - (power down) отключение питания.

XTAL, CLKIN - на них подается тактовая частота от кварца. В нашем случае 16,67 MHz.

PMS, IOMS,

BMS, DMS , CMS - Данные выводы служат для подключения и управления оверлейной памятью.

Конфигурация оверлейной памяти задается установкой управляющего сигнала CMS в регистре программируемых флагов и составного сигнала управления (Programmable Flag and Composite Select Control). Также можно использовать оверлейную память, как память данных.

Так как шина адреса ADSP-2181 имеет только четырнадцать разрядов, то для расширения адресного пространства оверлейной памяти используются флаги FL0, FL1, а также FL2 или PMS в зависимости от требуемой конфигурации.

Рисунок 3.3 Системный интерфейс ADSP 2181

Выбранный нами цифровой  сигнальный процессор ADSP - 2181 способен выполнять следующие действия:

За один цикл процессор ADSP-2181 может: Это происходит в то время как процессор продолжает:
- генерировать следующий адрес программы - получать и передавать данные через два последовательных порта
- Выбирать следующую команду - получать и/или передавать данные через внутренний порт прямого доступа в память
- выполнить одно или два перемещения данных - получать и/или передавать данные через порт прямого доступа в байтовую память
- модифицировать один или два указателя адреса данных - Декрементировать таймер
- выполнить вычислительную операцию

Это полностью удовлетворяет нашим требованиям, для обеспечения требуемой модуляции и реализации метода кодирования NBDP. А также фирма Analog Devices поставляет со своими процессорами мощные программные продукты для отладки и записи программ в DSP, что делает данный цифровой сигнальный процессор еще более приемлемым для нас.

3.2 Выбор кодека

Как было видно из пункта 3.1 , цифровой сигнальный процессор не занимается преобразованием аналогового сигнала в цифровой и наоборот, это делают АЦП и ЦАП. Вот таким комбинированным АЦП/ЦАП являются микросхемы CODEC.

Их как и DSP существует большое количество, но мы также остановимся на микросхемах фирмы Analog Devices. Т.к. в роли цифрового сигнального процессора нами выбран ADSP 2181, то выбираем звуковой кодек AD1847 с последовательным цифровым интерфейсом совместимым с ADSP 21xx.

Рисунок 3.4 - Графическое изображение Codec AD1847

Параметры AD1847:

Тип сигнала - моно/стерео

Преобразование- АЦП / ЦАП

Напряжение питания- + 5 V

Диапазон выходных частот- 20 Hz ... 20 kHz

Наличие фильтров: цифровой фильтр;

аналоговый фильтр НЧ;

Максимальная тактовая частота- 27 MHz

Аналоговый вход- 2

Вспомагательный аналоговый вход - 1

Аналоговый выход - 1

Рассмотрим назначение выводов и принцип работы кодека:

VCC - питание + 5 V. Источник питания тот же, что и ADSP - 2181.

GND - земля.

GNA - земля аналогового сигнала

SCLK - тактовый генератор последовательной передачи данных. (значение зависит от XTAL1,XTAL2 ) при установленном XTAL1 значение будет 12,288 MHz, при XTAL2 11,2896 MHz.

SDFS - синхронизация последовательных данных.

SDI, SDO - прием и передача данных из последовательного порта DSP. ( Serial Data Input и Serial Data Output ). Обмен данными может осуществляться как с DSP, так и любым HOST - процессором. Размер даных - 16 бит.

RST - при установке низкого уровня , происходит инициализация всех регистров начальными значениями. (RESET)

PWD - также установке низкого уровня , происходит инициализация всех регистров начальными значениями и перевод чипа в режим пониженного энергопотребления, при котором Vref и аналоговые выводы земли - отключены.

BM - при наличии на этот выводе высокого уровня сигнала , на шине устанавливается сигнал MASTER, и происходит передача данных в DSP по порту RXD0. В случае низкого уровня сигнала на шине устанавливается сигнал SLAVE, и происходит прием данных от DSP по порту TXD0.

CLKO - (clock output) выход тактового генератора. Значение зависит от XTAL1, XTAL2: при установленном XTAL1 значение будет 12,288 MHz, при XTAL2 16,9344 MHz.

Аналоговые выводы приема/передачи

LI1L - линейный вход 1 для левого канала

LI1R - линейный вход 1 для правого канала

LI2L - линейный вход 2 для левого канала

LI2R - линейный вход 2 для правого канала

AI1L - вспомагательный вход 1 для левого канала

AI1R - вспомагательный вход 1 для правого канала

AI2L - вспомагательный вход 2 для левого канала

AI2R - вспомагательный вход 2 для правого канала

LOL - линейный выход для левого канала

LOR - линейный выход для правого канала

X2O, X2I - от кварцевого резонатора 16,9344 MHz.

X1O, X1I - от кварцевого резонатора 24,576 MHz.

Исходя из этого выбираем кварцевый резонатор X2 с частатой 16, 9344 MHz, а X3 с частатой 24, 576 MHz.

Выбранные кварцевые резонаторы включаются по стандартной схеме с двумя параллельными конденсаторами по 18 pF.

Конденсаторы C31, C32, C36, C37 выбираем емкостью 18 pF.

FLTL - левый канал фильтра. Используется для подключения стандартного конденсатора 1 мкФ.

FLTR - правый канал фильтра. Используется для подключения стандартного конденсатора 1 мкФ.

Исходя из этого выбираем конденсаторы C40 и C41 емкостью 1 мкФ.

VRO - внешнее опорное напряжение. Величина 2,25 V. Запрещается подключение к данному выводу какой - либо нагрузки

VRI - внутренее опорное напряжение.


Рисунок 3.5 - Схема включения опорного напряжения

Из схемы включения видно, что выходное опорное напряжение используется для аналоговых сигналов. Исходя из данной стандартной схемы включения конденсаторы C46 и C47 выбираем емкостью 10 мкФ, а конденсатор C45 = 0.1 мкФ.

Рисунок 3.6 - Функциональная блок - схема кодека AD1847

В данном разделе были рассмотрены функции кодека ADSP 2181 , назначения выводов и принцип работы. Также были выбраны все необходимые элементы для стандартной схемы включения.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

рефераты
Новости