рефераты рефераты
Главная страница > Дипломная работа: Модуль накопления для задач многомерной мессбауэровской спектрометрии  
Дипломная работа: Модуль накопления для задач многомерной мессбауэровской спектрометрии
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Модуль накопления для задач многомерной мессбауэровской спектрометрии


В таких микросхемах уровень интеграции доведён до нескольких миллионов эквивалентных вентилей, а быстродействие до тактовых частот 500…600 МГц. На таких кристаллах можно поместить целую систему (в зарубежной литературе принят термин System-On-Chip, SOC), включающую процессорную часть, память, интерфейсные схемы и др.

Компоненты этих систем разрабатываются отдельно и хранятся в виде файлов параметризованных модулей. На базе таких виртуальных компонентов с помощью систем автоматизированного проектирования электронных устройств EDA (Electronic Design Automation) создаётся окончательная структура SOC-микросхем.

3.2 Методы и средства проектирования устройств с программируемой логикой

Характер проектирования существенно зависит от вида применяемой элементной базы. Небольшие устройства для реализации которых используются ПЛИС малой степени интеграции разрабатываются, как правило «вручную», когда проектирование сводится к построению таблицы программирования (прошивки), на основании которой обеспечиваются необходимые межсоединения.

Все современные методики проектирования ЦУ на базе схем программируемой логики высокой сложности основаны на применении САПР. Новейшие САПР предоставляют широкий набор инструменты для проектирования на этапах описания, компиляции, отладки, функционального и временного моделирования, конфигурирования, физического моделирования и программирования [7].

В настоящее время к наиболее распространенным универсальным способам описания, применимым для проектов любого уровня относят графический и текстовый. Реже используются непосредственная разводка схем в редакторе топологии, описания в виде требуемых временных диаграмм, а также описания путём построения графов.

Графический способ разработки дизайна подразумевает макетное построение схемы с использованием библиотечных элементов САПР, которые могут быть представлены в виде примитивов, в виде макрофункций в базисе элементов стандартных серий ТТЛ(Ш) или в виде параметризованных модулей. Главное достоинство графического способа – его традиционность и наглядность.

Использование текстового представления проекта допускает описание устройства, как с точки зрения поведения, так и с точки зрения структуры. Удобство текстового описания проявляется при создании систем, содержащих большое количество повторяющих фрагментов. Важными достоинствами являются текстового описания компактность и относительная простота автоматизации любых преобразований, включая начальную генерацию описания проекта.

Использование стандартных универсальных языков описания аппаратуры (HDL, Hardware Description Languages) обеспечивает простоту переноса проекта с одной аппаратной платформы на другую и переход от одной САПР к другой [7]. Текстовые описания имеют две основные разновидности – языки низкого уровня (аналоги языков программирования типа ассемблера) и высокого уровня. Примерами таких языков могут служить язык AHDL (Altera HDL) и ABEL (фирмы Xilinx). Языки высокого уровня менее связаны с аппаратными платформами и поэтому более универсальны. Среди них наиболее распространены языки VHDL и Verilog [7].

Описание в виде граф-схемы переходов (диаграммы состояний) является наиболее распространённым вариантом задания цифровых автоматов. Графические редакторы для создания автоматов включаются в состав средств задания исходных проектов современных САПР (например, в САПР Foundation фирмы Xilinx разработки фирмы ALDEC).

После составления описания проекта производится его компиляция. Данная процедура разбивается на ряд последовательных действий: сборка базы данных проекта, контроль соединений, логическая минимизация проекта, формирование загрузочного (конфигурационного) файла и др. Результат компиляции – загрузочный файл.

Тестирования проекта часто производится путём работы с редактором временных диаграмм. В данном варианте анализ производится на основе созданного генератора воздействия. Например в САПР MAX+PLUS II предусмотрено автоматическое вычисление трёх основных классов временных параметров:

-  минимальных и максимальных задержек между источниками (входными сигналами) и приёмниками (выходными сигналами), информация о которых выдаётся в виде матрицы задержек;

-  максимально возможной производительности устройства (пропускной способности) в виде максимальной частоты тактирования элементов памяти, используемых в проекте.

-  времён предустановки и выдержки сигналов, гарантирующих надёжную работу схем при фиксации сигналов в синхронных элементах памяти [7].

Многие САПР позволяют также выделять критические пути передачи и преобразования информации для схемного или топологического представления проекта.

При выборе той или иной элементной базы не маловажным критерием является наличие достаточно развитых и удобных средств разработки проектов на её основе.

Ряд фирм предлагает бесплатные версии САПР, представляющих собой базовый набор инструментов для проектирования ЦУ на базе ПЛИС. Примерами могут служить САПР MAX+PLUS II BASELINE – среда проектирования устройств на базе ПЛИС фирмы Altera, WebPACK ISE – версия САПР для ПЛИС фирмы Xilinx. Среди бесплатных САПР Xilinx следует также выделить систему WebFITTER, первый в своем роде продукт, основанный на использовании Internet.

Многие крупные фирмы-производители САПР интегральных схем активно включились в процесс создания программного обеспечения, поддерживающего ПЛИС различных производителей. Это позволяет проводить разработку алгоритмов, пригодных к реализации на ПЛИС не только разных семейств, но и различных производителей, что облегчает переносимость алгоритма и ускоряет процесс разработки. Примером таких систем являются продукты серии FPGA Express фирмы Synopsys, OrCAD Express фирмы OrCAD, продукты фирм VeryBest, Aldec, Cadence Design Systems и многих других. САПР фирмы Altera поддерживает интерфейс со многими из названных продуктов.

3.3 САПР MAX+PLUS II

Система MAX+PLUS II разработана фирмой Altera и обеспечивает многоплатформенную архитектурно независимую среду создания дизайна, легко приспосабливаемую для конкретных требований пользователя.

Название MAX+PLUS II является аббревиатурой от Multiple Array MatriX Programmable Logic User System (пользовательская система программирования логики упорядоченных структур). Система MAX+PLUS II имеет полный спектр возможностей логического дизайна: разнообразные средства описания проектов с иерархической структурой, мощный логический синтез, компиляцию с заданными временными параметрами, разделение на части (использование нескольких кристаллов), функциональное и временное тестирование (симуляцию), тестирование нескольких связанных устройств, анализ временных параметров системы, автоматическую локализацию ошибок, а также программирование и верификацию устройств [8]. Процедуру разработки нового проекта от концепции до завершения можно упрощённо представить следующим образом:

1)  создание нового файла проекта или иерархической структуры нескольких файлов проекта с помощью любого сочетания редакторов в системе MAX+PLUS II, то есть графического, текстового и сигнального редакторов;

2)  задание имени файла - проекта верхнего уровня в качестве имени проекта;

3)  назначение семейства ПЛИС для проекта;

4)  компиляция проекта. По желанию пользователя можно подключить модуль извлечения временных параметров проекта Timing SNF Extractor для создания файла, используемого при временном моделировании;

5)  в случае успешной компиляции возможен временной анализ в окне Timing Analyzer и симуляция в окне Simulator

6)  программирование с использованием программатора MPU (Master Programming Unit) или подключение загрузочных устройств BitBlaster, Byte-Blaster или FLEX Download Cable к устройству, программируемому в системе;

ПО системы MAX+PLUS II содержит 11 приложений и главную управляющую программу. Различные приложения, обеспечивающие создание проекта, могут быть активизированы мгновенно, что позволяет пользователю переключаться между ними щелчком мыши или с помощью команд меню. В это же время может работать одно из фоновых приложений, например, компилятор, симулятор, анализатор синхронизации и программатор. Одни и те же команды разных приложений работают одинаково, что облегчает задачу разработки логического дизайна.

В таблице 1 приведено краткое описание приложений.

В САПР MAX+PLUS II легко доступны все инструменты для создания проекта. Разработка проекта ускоряется за счёт имеющихся стандартных функций, в том числе примитивов, мегафункций, библиотеки параметризованных модулей (LPM) и макрофункций устаревшего типа микросхем 74 серии.

Таблица 1 Приложения системы MAX+PLUS II.

Приложение Выполняемая функция

Hierarchy Display

Обзор иерархии - отображает текущую иерархическую структуру файлов в виде дерева с ветвями, представляющими собой подпроекты.

Graphic Editor

Графический редактор - позволяет разрабатывать схемный логический проект в формате реального отображения на экране WYSIWYG.

Symbol Editor

Символьный редактор - позволяет редактировать существующие символы и создавать новые.

Text Editor

Текстовый редактор - позволяет создавать и редактировать текстовые файлы логического дизайна, написанные на языках AHDL, VHDL, Verilog HDL.

Waveform Editor

Сигнальный редактор - выполняет двойную функцию: инструмент для разработки дизайна и инструмент для ввода тестовых векторов и наблюдения результатов тестирования.

Floorplan Editor

Поуровневый планировщик - позволяет графическими средствами делать назначения контактам устройства и ресурсов логических элементов.

Compiler

Компилятор - обрабатывает логические проекты.

Simulator

Симулятор - позволяет тестировать логические операции и внутреннюю синхронизацию проектируемой логической цепи.

Timing Analyzer

Временной анализатор - анализирует работу проектируемой логической цепи после того, как она была синтезирована и оптимизирована компилятором.

Programmer

Программатор - позволяет программировать, конфигурировать, проводить верификацию и тестировать ПЛИС фирмы ALTERA.

Message Processor

Генератор сообщений - выдает сообщения об ошибках, предупреждающие и информационные сообщения.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

рефераты
Новости