рефераты рефераты
Главная страница > Курсовая работа: Гидроузел с плотиной из грунтовых материалов  
Курсовая работа: Гидроузел с плотиной из грунтовых материалов
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Гидроузел с плотиной из грунтовых материалов


Из 2-х полученных отметок принимаю максимальное значение для дальнейшего проектирования:

Тогда высота плотины будет:

2.2.5 Проектирование и назначение дренажа

Дренаж – это элемент плотины, состоящий из хорошо проницаемых материалов и предназначенный для:

1.  организованного сбора и отвода профильтровавшейся воды;

2.  предотвращения выхода фильтрационного потока на низовой откос и в зону, подверженную промерзанию;

3.  понижения депрессионной поверхности с целью повышения устойчивости низового откоса;

4.  повышения устойчивости верхового откоса при быстрой сработке водохранилища, а также для уменьшения или снятия парового давления, возникающего при сейсмических воздействиях, отвода воды, профильтровавшейся через экран, ядро.

Основные конструкции дренажей:

наслонный;

дренажная призма (банкет);

комбинированный;

плоский горизонтальный;

ленточный;

трубчатый горизонтальный;

трубчатый вертикальный.

Дренажные устройства обычно включают приемную и отводящую части. Приемная часть дренажа выполняется в виде фильтра (обратного фильтра), предназначенного для исключения фильтрационных деформаций грунта тела и основания плотины в месте выхода фильтрационного потока в дренаж. В качестве отводящей части используются крупнообломочные грунты тела дренажа выводные ленты и трубы. Принципиальное отличие береговых участков плотины, расположенных на отметках, превышающих максимальный уровень нижнего бьефа, от русловых и пойменных участков заключается в отсутствии необходимости защиты низового откоса от волновых воздействий со стороны нижнего бьефа, поэтому применяемые на незатопляемых береговых участках дренажи могут выполняться облегченной конструкции.

При выборе типа и предварительном назначении параметров дренажей учитывают следующее /38/: при наличии достаточного количества каменного материала предпочтение для русловых и пойменных дренажей следует отдавать дренажной призме (дренажному банкету), так как этот тип дренажа обладает рядом достоинств, в числе которых: дренажная призма хорошо дренирует тело плотины в основание во всем диапазоне колебаний уровней нижнего бьефа; является одновременно креплением низового откоса в зоне волновых воздействий нижнего бьефа; имеет простую конструкцию; дополнительно повышает устойчивость низового откоса за счет высоких сдвиговых характеристик грунтов, применяемых при ее возведении; она может использоваться в отдельных случаях для перекрытия русла реки в период строительства плотины.

При проектировании дренажа необходимо также учитывать физические характеристики грунтов тела и основания плотины, их суффозионность и условия фильтрации в области дренажа.

Наслонный дренаж не понижает кривую депрессии, а только предохраняет низовой откос в месте выхода фильтрационного потока от возможных фильтрационных деформаций.

Дренажная призма широко применяется в грунтовых плотинах благодаря простоте конструкции; работе при любых переменных уровнях воды в НБ; использованию как перемычки при пропуске строительного расхода. Недостаток – требуется относительно большой объём крупного камня.

Так как наслонный дренаж не понижает кривую депрессии, то выполняем дренаж в виде дренажного банкета из грунта №17 (крупнообломочный, глыбовый).Отметка верха дренажной призмы () должна превышать максимальный уровень нижнего бьефа на величину а = 0,5... 1,0 м (принимаю 1м). Обычно высота дренажной призмы составляет  от высоты плотины. Ширина дренажной призмы поверху  зависит от условий производства работ и должна быть не менее 3...4 м. Коэффициент заложения внешнего откоса дренажной призмы , а внутреннего . Толщина и количество слоев обратного фильтра со стороны тела плотины и основания зависит от вида защищаемого грунта и характеристик материала призмы.

Описание: дренаж

Определяем отметку верха дренажа:

Превышение гребня дренажного банкета над УНБmax = 102,7 м при  определяют с запасом наводнения, равного в расчете 1м.


=103,7-100=3,7

,

следовательно, проектируем дренаж в виде дренажного банкета.

Ширину банкета поверху назначают из условий производства работ, но не менее 1 м (СНиП 2.06.05-84 п.п.2.54). В данном курсовом проекте ширину банкета принимаем из условия проезда машины и равной 2 м.

Заложения наружного откоса дренажа задают из условий устойчивости (обычно 1,5).

Коэффициент заложения внутреннего откоса обычно составляет 1,25, в данном проекте он составляет 1,25.

Для понижения кривой депрессии дренажный банкет комбинируем с плоским дренажом длиной 7м, с коэффициентом заложения внешнего откоса 1.

Конструкция дренажа показана на рисунке 6.

2.2.6 Проектирование обратных фильтров

Обратные фильтры – грунты определенного гранулометрического состава, укладываемые по мере возрастания крупности по направлению движения фильтрационного потока.

Обратные фильтры располагают на контакте дренажа с дренируемым телом плотины, с основанием, на контакте тела плотины с креплением верхового откоса каменной наброской и иногда на контакте ПФУ и боковых призм.

Для обратного фильтра используют имеющиеся карьерные грунты или искусственные материалы. Их подбирают из условия обеспечения фильтрационной прочности сопрягающих грунтов в месте контакта. Если естественный карьерный грунт оказывается непригодным, то проводят его обогащение или отсев крупных фракций.

Коэффициент неоднородности материалов обратных фильтров дренажей должен иметь следующие значения:

1.  если з < 10 – грунт несуффозионный (допустим в качестве обратного фильтра),

2.  если з = 10…20 – грунт полусуффозионный (допустим в качестве обратного фильтра при определенных условиях),

3.  если з > 20 – грунт суффозионный (не допустим в качестве обратного фильтра).

Число слоев обратного фильтра и их состав необходимо определять на основе технико-экономического сравнения различных вариантов. При этом следует стремиться к созданию однослойных фильтров и только в исключительных случаях проектировать многослойные фильтры с возможно меньшим числом слоев.

При расчете однослойного или первого слоя многослойного обратного фильтра используют следующие обозначения:

D50 - размер фракций тела дренажа, масса которых вместе с массой более мелких фракций составляет 50% массы всего грунта;

d50 - средний размер фракций I слоя обратного фильтра;

D60 - размер фракций тела дренажа, масса которых вместе с массой более мелких фракций составляет 60% массы всего грунта;

D10 - размер фракций тела дренажа, масса которых вместе с массой более мелких фракций составляет 10% массы всего грунта;

-


коэффициент неоднородности защищаемого грунта;

-

коэффициент неоднородности первого слоя обратного фильтра;

-

коэффициент междуслойности.

Зерновой состав фильтра должен исключать проникание (просыпаемость) защищаемого грунта в поры фильтра, выпор и вдавливание частиц грунта в поры фильтра, размыв защищаемого грунта на границе с фильтром, отслаивание глинистого грунта на контакте с материалом фильтра, а также суффозию фильтра. В зависимости от типа плотины, а также грунтов ее тела и основания подбор первого слоя обратного фильтра выполняют исходя из различных условий.

При подборе фильтров возможны два случая:

1.  первый – известны параметры карьерного грунта и заданы кривые гранулометрического состава, расчетом устанавливают применимость этих грунтов для фильтра;

2.  второй — данные гранулометрического состава отсутствуют, кривые их определяют из условия отсутствия фильтрационных деформаций.

Обратные фильтры можно подобрать по графикам, разработанным В. С. Истоминой.

Принцип их построения основан на разделении поля графика на две области - допускаемых (ниже кривой) и недопускаемых (выше кривой) характеристик. По осям графиков откладывают характеристики грунтов; если они пересекаются в области допускаемых значений, грунт можно использовать для фильтра, если же они пересекаются в области недопускаемых значений, то грунт нельзя использовать для фильтра.

Подбор зернового состава второго и последующих слоев многослойного фильтра ведут по тем же графическим зависимостям полагая, что через di и Di соответственно обозначены размеры фракций предыдущего и последующего слоев фильтра.

Толщину слоев обратного фильтра назначают с учетом производства работ и технико-экономических расчетов. По фильтрационным условиям толщина каждого слоя должна быть не менее 3D85, но не меньше 0,2 м.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

рефераты
Новости