рефераты рефераты
Главная страница > Учебное пособие: Магма и магмоообразование  
Учебное пособие: Магма и магмоообразование
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Магма и магмоообразование

В природе существуют исключения из выше приведенных условий. Если в интрузивных телах образуется трещиноватость, то минерализаторы (летучие компоненты) легко выделяются из магмы, потеря которых приводит к резкому повышению вязкости магмы и быстрой ее кристаллизации с образованием мелкозернистой структуры (например, при образовании аплитов). Структуры пород, слагающих разные участки одного и того же массива, обычно различны. В краевых частях любых интрузивных и эффузивных тел породы менее раскристаллизованы, чем в центральных участках.

Процесс кристаллизации магмы определяется в основном двумя факторами, из которых складывается кристаллизационная способность вещества: а) количеством образующихся центров кристаллизации и б) скоростью роста кристаллов. Кристаллизация расплава возможна лишь при некотором его переохлаждении, потому что в истинно равновесных условиях выделение теплоты при переходе вещества из жидкого в твердое состояние обусловливает расплавление образовавшихся кристаллов, в то время как при переохлаждении этой теплоты оказывается недостаточно (рис. 3.1.). Число центров кристаллизации в районе точки плавления очень незначительно, но оно возрастает с увеличением степени переохлаждения, а затем, пройдя максимум, уменьшается и становится равным нулю. Скорость роста кристаллов также мала вблизи точки плавления, увеличивается по мере удаления от нее, переходит через максимум и уменьшается до нуля. При этом максимумы кривых

скорости роста кристаллов и скорости образования центров кристаллизации не совпадают, что обусловливает наличие нескольких областей переохлаждения с различной кристаллизационной способностью и соответственно с разными типами структур.

Если магма охлаждается медленно и температура ее долго держится вблизи точки плавления, то образуется небольшое количество центров кристаллизации. При очень медленном охлаждении магма может полностью раскристаллизоваться, не достигнув поля, где образуется много центров кристаллизации.


4. Общие закономерности кристаллизации магмы

Главнейшие особенности минерального состава, структуры и текстуры любой магматической породы определяются процессом кристаллизации природного силикатного расплава – магмы. Магма имеет сложный и различный в разных случаях состав. В результате ее кристаллизации обычно выделяется не один твердый минерал, а несколько. В процессе кристаллизации выделившиеся минералы находятся во взаимодействии с расплавом, некоторые из них появляются и исчезают, другие изменяют свой состав, третьи остаются такими, какими они выделелись первоначально. Для того, чтобы представить себе общий ход кристаллизации магмы, как главной стадии образования магматической породы, уяснить порядок выделения минералов, характер взаимных отношений между выделившимися минералами и расплавом, необходимо рассмотреть общие законы кристаллизации силикатных расплавов. Они установлены экспериментально и рассчитаны теоретически, действуют при кристаллизации двух-, трех- и многокомпонентных систем и определяют кристаллизацию магмы, которая с точки зрения физической химии является многокомпонентной системой.

Кристаллизация любого сложного расплава, как естественного, так и искусственного, подчиняется трем законам: 1) закону эвтектики; 2) закону перитектики (прерывно-реакционного взаимодействия) и 3) закону кристаллизации твердых растворов (непрерывно-реакционного взаимодействия) и при кристаллизации сложного многокомпонентного расплава все эти типы соотношений могут проявляться одновременно, то есть одна пара или несколько минералов могут находиться в эвтектических соотношениях между собой и расплавом, друга пара может иметь прерывно-реакционные соотношения и т.д. Перечисленные законы относятся к кристаллизации «сухих», конденсированных расплавов, на кристаллизацию которых не влияет наличие газовой фазы. При кристаллизации расплавов богатых летучими компонентами вышеупомянутые отношения между минералами и расплавом сохраняются, но процесс кристаллизации существенно усложняется.

4.1 Кристаллизация по закону эвтектики

Кристаллизация по закону эвтектикихарактеризуется следующими главными особенностями: 1) выделяющиеся из расплава минералы не меняют во время кристаллизации свой состав и не вступают в реакционное взаимодействие ни между собой, ни с расплавом; при нарушении нормального хода кристаллизации может быть лишь задержка в кристаллизации, обратное расплавление (оплавление) ранее выделившихся твердых кристаллов; 2) порядок выделения минералов из расплава определяется не столько температурой плавления этих минералов, сколько составом кристаллизующегося расплава, концентрацией в нем того или другого компонента; 3) температура начала кристаллизации расплава смеси зависит от состава этой смеси; небольшая прибавка к какому-либо компоненту другого компонента понижает температуру начала кристаллизации; 4) температура конца кристаллизации расплава смеси не зависит от состава смеси; кристаллизация заканчивается всегда при определенной эвтектической температуре; 5) состав последней порции расплава в конце процесса кристаллизации не зависит от состава исходного расплава. Состав последней порции расплава всегда определенный – эвтектический. Эвтектика – это определенное процентное соотношение двух или нескольких компонентов расплава, которые одновременно кристаллизуются при определенной температуре, которая всегда ниже температуры кристаллизации каждого их компонентов в отдельности.

Рассмотрим эвтектическую кристаллизацию на примере системы диопсид-анортит (рис. 4.1). Температура плавления анортита 1550 ºС, то есть если взять расплав чистого анортита, то он будет кристаллизоваться при этой температуре пока полностью не раскристаллизуется и температура будет постоянной. Это вытекает из «правила фаз», выражаемого формулой F=(K+2) – P, где F – число возможных изменений условий, К – число компонентов и Р – число фаз (твердых и жидких). Для конденсированных систем, где изменение давления не влияет на ход кристаллизации, это выражение принимает вид: F=(K+1) – P. В данном случае К=1, так как взят расплав только одного анортита и система однокомпонентная. Р=2 (расплав и кристаллы анортита), следовательно F= (1+1) – 2=0.

Прибавление 15% диопсида к расплаву понизит температуру начала кристаллизации до 1510ºС. При этом в ходе кристаллизации температура уже может понижаться, так как здесь К=2, Р=2, F=(2+1) – 2=1. Если взять состав расплава с еще большим содержанием диопсида (например, 35%), то температура начала кристаллизации будет еще ниже (1420ºС). Поскольку состав расплава можно изменять непрерывно, то полученная кривая выразит температуру начала кристаллизации всех смесей богатых анортитом.

То же самое будет характерно и для смесей богатых диопсидом, температура плавления которого 1400ºС. Прибавление 20% анортита понизит температуру начала кристаллизации до 1360ºС и т.д. В итоге может быть построена кривая изменения температуры начала кристаллизации для смесей богатых диопсидом. На рисунке 1 видно, что обе кривые пересекаются в точке е. Следовательно, если возьмет расплав, в котором 46% диопсида и 54% анортита, то он начнет кристаллизоваться при наименьшей температуре 1270ºС. Точка е соответствует эвтектике и для нее характерна определенная температура. Если исходный расплав имеет эвтектический состав, то с самого начала начнут выделяться одновременно и анортит и диопсид. По правилу фаз температура не изменится, пока не исчезнет весь расплав. К=2, Р=3 (две твердых фазы, диопсид и анортит плюс расплав), F=(2+1) – 3=0. Если же состав исходного расплава не эвтектический, то вначале из расплава будет выделяться только один минерал (тот которого во взятом расплаве больше, чем в эвтектическом). По мере уменьшения количества этого минерала, будет снижаться температура кристаллизации и уменьшаться концентрация этого минерала, пока не достигнет точки эвтектики.

Простая двухкомпонентная система диопсид-анортит имеет большое значение для петрологии. Состав основных магматических пород (например, габбро) почти эвтектический. Отсюда следует вывод, что пироксен и основной плагиоклаз должны кристаллизоваться из магмы одновременно. Состав основной магмы не точно отвечает эвтектике, поэтому первым может начать выделяться либо пироксен, либо плагиоклаз, но в ходе кристаллизации эвтектика будет достигнута. В эвтектических соотношениях находятся такие минералы как кварц и полевой шпат; нефелин и полевой шпат; полевой шпат и цветной минерал; нефелин и цветной минерал. Эвтектические соотношения существуют между цветными и бесцветными минералами любой магматической породы. По этой причине при кристаллизации магмы цветные и бесцветные минералы выделяются одновременно. Поскольку между кварцем и полевым шпатом тоже существует эвтектическое соотношение, оба этих минерал совместно присутствуют во вкрапленниках в гранит-порфирах или риолитах.

В системах с летучими компонентами, эвтектика между двумя минералами может иметь несколько иное количественное соотношение, чем в «сухих» системах, но сохраняется. В тех случаях, когда в дополнение к двум минералам присутствует третий, например, пироксен, плагиоклаз и оливин, то порядок кристаллизации определяется правилом Нернста о понижении растворимости веществ, имеющих общий ион. Так как оливин и пироксен имеют общий ион (Mg, Fe), растворимость оливина в присутствии пироксена значительно уменьшается, и он кристаллизуется раньше полевого шпата даже в тех случаях, когда его содержание невелико. Особенности эвтектики сохраняются не только в тройной системе. Они должны сохраняться и в многокомпонентной системе, какой является магма.


4.2 Кристаллизация по закону перитектики

Кристаллизация по закону перитектики характеризуется следующими особенностями: 1) она возможна лишь в том случае, когда компоненты образуют химическое соединение с инконгруентной (скрытой) точкой плавления. Это означает, что при нагревании данное соединение не может сразу переходить в расплавленное состояние, а разлагается с образованием расплава иного состава и другой твердой фазы. Так, например, в двухкомпонентной системе Mg2SiO4-SiO2 есть соединение Mg2Si2O6, которое не может сразу переходить в расплав того же состава; 2) при кристаллизации по закону перитектики при определенных температурах ранее выделившиеся кристаллы вступают в реакционное взаимодействие с расплавом, в результате которого образуются кристаллы нового минерала; при этом реакционное взаимодействие имеет место только в определенные периоды процесса кристаллизации и поэтому взаимоотношения минералов с магмой и между собой могут быть только прерывно реакционными; 3) порядок выделения минералов строго определенный и не зависит от состава расплава; 4) температура начала и конца кристаллизации в известных пределах зависит от состава смеси; 5) состав последних порций кристаллизующегося расплава в известных пределах также зависит от состава исходного расплава.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

рефераты
Новости