рефераты рефераты
Главная страница > Учебное пособие: Электротехника с основами электроники  
Учебное пособие: Электротехника с основами электроники
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Электротехника с основами электроники

6. Питание электрической цепи осуществлять от регулируемого источника питания синусоидального напряжения, расположенного на панели источника питания (лабораторный автотрансформатор - ЛАТР). Перед включением необходимо убедиться, что ручка регулятора источника питания находится в крайнем левом положении. В режиме исследований максимальное напряжение на входных зажимах должно быть не выше 120 - 130 В (для ограничения тока).

7. Для получения достоверных результатов необходимо выбрать оптимальный предел измерения регистрирующего прибора и не допускать ошибок при определении цены деления прибора.

4. Вопросы самоконтроля

Запишите формулы для расчета R, RK, LK, C,w, ZK, cosj, Z, если известны показания амперметра, вольтметров, ваттметра.

Изобразите векторные диаграммы для активно-индуктивной, активно-емкостной и активно-индуктивно-емкостной нагрузок.

Изобразите векторную диаграмму цепи с R, L, C элементами при резонансе напряжений.

Запишите зависимости между R, XL, XC, UL, UC, cosj при резонансе напряжений.

Может ли быть величина напряжения на индуктивности, активном сопротивлении, емкости больше величины питающего напряжения? Заключение по данному вопросу подтвердить примером.

Изобразите треугольники напряжений, сопротивлений и мощностей для цепи с R, L, C элементами. Напишите зависимости между величинами и приведите примеры их практического применения.

В чем заключается явление резонанса и при каких условиях оно возникает?

Какую опасность представляет резонанс напряжений для электротехнических устройств?

Изменением каких параметров электрической цепи можно получить резонанс напряжений?

С помощью каких приборов и по какому признаку можно судить о возникновении резонансов напряжений в электрической цепи?

Приведите анализ построенных векторных диаграмм до и после резонансных напряжений и дайте объяснение, в каком случае напряжение опережающее, а в каком отстающее?

К чему приводит изменение активного сопротивления электрической цепи при резонансе напряжений?

Сохранится ли резонанс напряжений, если изменить величину напряжения питающей сети? Объясните причину этого.

Можно ли получить резонанс напряжений путем изменения параметров питающего напряжения?

Приведите примеры электротехнических и электронных устройств, в которых используется явление резонанса напряжения.


Литература

1. Иванов И.И., Равдоник В.С. Электротехника. - М.: Высшая школа, 1984, с.53 - 58.

2. Касаткин А.С., Немцов М.В. Электротехника. - М.: Энергоатомиздат, 1983, с.73 - 77.


Лабораторная работа №5

КОМПЕНСАЦИЯ РЕАКТИВНОЙ МОЩНОСТИ

Цель работы.

Ознакомление с методом повышения коэффициента мощности электрической цепи путем включения конденсаторов параллельно с нагрузкой. Выявление эффективности повышения коэффициента мощности.

1. Основные теоретические положения.

Приемники электрической энергии при своей работе потребляют из сети активную и реактивную мощность. Наиболее распространенные приемники электрической энергии - асинхронные электродвигатели, трансформаторы и другие требуют для своей работы создания магнитного поля: вращающееся магнитное поле электрических машин и переменный магнитный поток трансформаторов. Величина тока, необходимая для создания магнитного поля, зависит от индуктивного сопротивления потребителя электрической энергии и его нагрузки во время работы.

Эффективность использования электрической установки определяется по отношению активной мощности Р к полной мощности S, потребляемой приемником из сети. Это отношение называется коэффициентом мощности. Из треугольника мощностей (рис.1) видно, что

Рис.1. Треугольник мощностей.

Тогда P=Scosj=UIcosj, а ток в нагрузке I=P/U cosj.

При заданной активной мощности P (U=const) ток обратно пропорционален cosj, т.е. реактивный ток при уменьшении cosj возрастает за счет индуктивной составляющей Ip=Isinj, являясь носителем реактивной энергии. Увеличение тока в нагрузке, вызванное уменьшением cosj неизбежно приводит к дополнительной потере электроэнергии во всех элементах системы электроснабжения: в проводах линии электропередач (Q = R×I2), в трансформаторах, в обмотках генераторов. Увеличение тока в нагрузке приводит к дополнительному увеличению падения напряжения в обмотках генераторов и трансформаторов, в проводах сети с сопротивлением Z (U=Z×I). все это приводит к снижению КПД энергосистемы и напряжения на электроприемниках.

Для повышения cosj (уменьшения реактивной составляющей активно-индуктивной нагрузки) промышленных установок применяют различные меры, которые сводятся или к уменьшению потребления реактивной мощности QL, или к компенсации реактивной мощности QL мощностью QС. Так как емкостной ток Ic находится в противофазе с индуктивной составляющей тока нагрузки, то реактивная составляющая тока в линии IP=IL-IC уменьшается. В результате ток в линии, угол сдвига фаз j и реактивная мощность Q=UIsinj уменьшается, а cosj увеличивается. Для осуществления этого мероприятия параллельно нагрузке подключают батареи конденсаторов или синхронные компенсаторы (синхронный электродвигатель в режиме перевозбуждения). Реактивная мощность по-прежнему поступает к потребителю, но уже не от генераторов, расположенных иногда за сотни километров, а от источника, находящегося рядом (например конденсатор). Таким образом, происходит освобождение элементов системы электроснабжения от реактивной составляющей тока нагрузки.

Уменьшение потребления реактивной мощности Q достигается за счет применения более современного оборудования, улучшения качества ремонта, ограничения работы оборудования на холостом ходу или с недогрузкой.

Для повышения коэффициента мощности и, следовательно, экономичности системы электроснабжения предприятий до недавнего времени нормировался минимально допустимый cosj, а в настоящее время устанавливается допустимое значение реактивной мощности и нормируемый tgj=Q/P, определяемый по показаниям счетчиков реактивной и активной энергии.

При компенсации реактивной энергии за счет установки конденсаторов их величина может быть определена по формуле:

, Ф

где Р - активная мощность потребления, Вт

f - частота сети, Гц

U - напряжение сети, В

tgj1 - до компенсации

tgj2 - после компенсации.

Задание по работе.

2.1 Определить энергетические показатели потребителя при отключенной конденсаторной батарее.

2.2 Рассчитать емкость конденсаторной батареи, необходимую для компенсации реактивной энергии до нормируемого значения cosj=0,95.

2.3 Исследовать влияние емкости конденсаторной батареи на энергетические показатели потребителя.

2.4 Построить векторные диаграммы для трех случаев: при отключенной конденсаторной батарее; при полной компенсации реактивной мощности (cosj=1); при перекомпенсации (мощность конденсаторов превышает индуктивную мощность нагрузки и в сеть отдается емкостная мощность).

2.5 Составить краткие выводы по работе.

2.6 Ответить на вопросы самоконтроля.

Методические указания по выполнению работы.

3.1 Ознакомиться с измерительными приборами и оборудованием, используемыми при выполнении работы.

Собрать электрическую цепь согласно схеме (рис.2). Для измерения напряжения предусмотреть вольтметр со свободными концами. В схеме катушка (сопротивления RК и ХК) имитирует нагрузку, а резистор (сопротивление RЛ) - линию.

Рис.2. Схема для проведения опытов.

3.3 Изменяя емкость конденсатора от нуля (конденсатор не включен) до значения, при котором емкостный ток Ic в 1,6 - 2 раза больше тока катушки IК проследить за изменениями показаний приборов. Отметить наступление резонанса токов (полной компенсации реактивной мощности), при этом ваттметр, включенный на режим измерения реактивной мощности, показывает, что из сети реактивная мощность не потребляется.

Результаты замеров (4 - 5 точек) записать в таблицу. Переключатель S1 предназначен для измерения одним ваттметром, активной (положение Р) и реактивной (положение Q) мощностей, потребляемой нагрузкой, выключатель S2 предназначен для коммутации емкостной нагрузки.

Измерение напряжения на элементах цепи производится многопредельным вольтметром или ампервольтметром (тестером).

п/п

Измерено С  Вычислено

U1

I1

P Q

U2

QC

cosj DP

В А Вт ВАр В А А В мкФ ВАр - Вт %

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

рефераты
Новости