рефераты рефераты
Главная страница > Шпаргалка: Физика, основы теории  
Шпаргалка: Физика, основы теории
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Шпаргалка: Физика, основы теории

В 1831 г. Фарадей экспериментально обнаружил, что во всяком замкнутом проводящем контуре при изменении магнитного потока через поверхность, ограниченную эти контуром, возникает электрический ток. Это явление называют электромагнитной индукцией, а возникающий ток - индукционным. Величина индукционного тока не зависит от способа, которым вызывается изменение магнитного потока, а определяется лишь скоростью изменения Ф.

Согласно правилу Ленца индукционный ток всегда направлен так, чтобы противодействовать причине, его вызывающей. Иными словами, индукционный ток всегда направлен так, что созданное им магнитное поле противодействует тому изменению магнитного потока, которое вызывает данный ток.

Для создания тока в цепи необходимо наличие э.д.с. Поэтому явление электромагнитной индукции свидетельствует о том, что при изменении магнитного потока A в контуре возникает э.д.с. индукции ei. Согласно закону Фарадея-Максвелла э.д.с. индукции, возникающая в контуре, равна скорости изменения магнитного потока, взятой с противоположным знаком.

Мгновенное значение э.д.с. индукции находят по формуле: εi = - dФ∕dt = -Ф´

Среднее значение э.д.с. индукции εi = - ∆Ф⁄∆t

Знак "-" в формулах ставится согласно правилу Ленца.

В случае, когда контур состоит из N витков (т.е. представляет собой соленоид или тороид)

εi = - dΨ∕dt, где Ψ = NФ (Ψ – потокосцепление)

Э.д.с. индукции возникает и тогда, когда контур неподвижен, а магнитное поле изменяется, и в том случае, когда магнитное поле постоянно, а проводник движется с пересечением линий магнитной индукции. Природа э.д.с. индукции в каждом из этих случаев различна.

В первом случае возникновение э.д.с. индукции обусловлено тем, что изменяющееся магнитное поле, в котором находится неподвижный контур, вызывает появление в нем вихревого электрического поля. Это поле не связано с электрическими зарядами, а неразрывно связано с переменным магнитным полем. Силовые линии этого поля замкнуты. При перемещении заряда по замкнутой траектории в этом поле совершается работа, отличная от нуля.

В случае, когда проводник движется в неизменном магнитном поле с пересечением линий магнитной индукции, возникновение э.д.с. индукции обусловлено действием сил Лоренца, т.е. э.д.с. имеет магнитную природу.

Индукционные токи, возникающие в сплошных металлических телах, называют токами Фуко. Чтобы уменьшить их вредное влияние (нагревание сердечников трансформаторов, генераторов переменного тока, электродвигателей) эти сердечники собирают из отдельных изолированных друг от друга пластин. Тепловое действие токов Фуко используется в индукционных печах для выплавки металлов в вакууме, что позволяет получить материалы исключительно высокой чистоты. Вихревые токи, возникающие в проводах, по которым текут переменные токи, направлены так, что ослабляют ток внутри провода и усиливают вблизи поверхности. В результате быстропеременный ток оказывается распределенным по сечению провода неравномерно - он как бы вытесняется на поверхность проводника. Это явление называют скин-эффектом или поверхностным эффектом. Из-за скин-эффекта внутренняя часть проводников в высокочастотных цепях оказывается бесполезной, поэтому проводники для таких цепей изготавливают в виде трубок. Токи Фуко также применяют для успокоения (демпфирования) подвижных частей гальванометров, сейсмографов и других приборов.


15. Явление самоиндукции. Токи при замыкании и размыкании цепи. Энергия магнитного поля

Электрический ток i, текущий в любом контуре, создает потокосцепление (полный магнитный поток) Ψ. При изменении i будет меняться Ψ, и, следовательно, в контуре будет индуцироваться э.д.с. Это явление называют самоиндукцией.

В соответствии с законом Био-Савара-Лапласа напряженность магнитного поля пропорциональна силе тока, вызвавшего поле. Отсюда следует, что ток в контуре i и создаваемый им полный магнитный поток Ψ пропорциональны друг другу:

Ψ = Li.

Коэффициент пропорциональности L между силой тока и полным магнитным потоком Ψ называют индуктивностью контура. Наблюдения и расчет показывают, что индуктивность контура зависит от его формы, размеров, числа витков и магнитной проницаемости сердечника (если он помещен в контур).

При изменении силы тока в контуре возникает э.д.с. самоиндукции. В случае, когда индуктивность контура неизменна, э.д.с. самоиндукции можно вычислить по формуле:

εs = - L di/dt = - L і′

Индуктивность проводника численно равна э.д.с. самоиндукции, возникающей в данном проводнике при изменении в нём тока на единицу тока за единицу времени. Единицу силы тока устанавливают из этой же формулы:


1В 1С = 1 Ом ·с = 1 Гн (генри)

 1А

Явление возникновения э.д.с. индукции в одном из контуров при изменении силы тока в другом называют взаимной индукцией.

По правилу Ленца дополнительные токи, возникающие в проводнике вследствие самоиндукции, всегда направлены так, чтобы препятствовать изменениям тока, текущего в цепи. Это приводит к тому, что установление тока при замыкании цепи и убывание тока при размыкании цепи происходит не мгновенно, а постепенно.

Экстраток размыкания тем больше, чем большее число витков имеет контур. Поэтому в цепях тех электродвигателей и электрогенераторов, где после размыкания цепи остаются замкнутые контуры, вместо рубильников ставят рычажные реостаты, при пользовании которыми исключается возможность возникновения больших экстратоков.

Э.д.с самоиндукции противодействует увеличению электрического поля в цепи, возникающего при её замыкании, т.е. при подключении к ней источника тока. Поэтому для создания в проводнике с индуктивностью L тока должна быть совершена работа против сил вихревого электрического тока, появляющегося в проводнике с током при изменении его магнитного поля. Эта работа совершается за счет энергии источника тока, создающего ток в данном проводнике. Из закона сохранения энергии следует, что при этом энергия источника тока превращается в энергию магнитного поля тока. Энергию магнитного поля проводника с током определяют по формуле:

Wм = LI² /2


16. Электрический ток в металлах. Элементарная классическая теория проводимости металлов

Для выяснения природы носителей тока в металлах был поставлен ряд опытов.

Опыт Рикке (1901 г.)

Cu Al Cu

Три цилиндра с тщательно отполированными торцами складывались в один составной проводник, по которому в течение года в одном направлении пропускался электрический ток. Вес цилиндров не изменился. Следовательно, перенос заряда в металлах осуществлялся не атомами, а другими частицами, входящими в состав металлов. Такими частицами могли быть открытые Томсоном электроны.

Опыты Мандельштама и Папалекси (1913 г.), Стюарта и Толмена (1916 г.)

На катушку намотана проволока, присоединенная к чувствительному гальванометру. Катушку приводили во вращение, а затем резко тормозили. В момент торможения гальванометр показывал кратковременный ток, направление которого свидетельствовало о том, что он создается движением отрицательно заряженных частиц. Стюарт и Толмен определили удельный заряд q/m частиц. Он практически совпал с удельным зарядом электрона. Тем самым было доказано, что электрический ток в металлах представляет собой упорядоченное движение электронов.

В начале ХХ века Друде и Лоренцем была создана классическая электронная теория проводимости металлов. Её основные положения заключаются в следующем.

Металлы имеют кристаллическую решетку, в узлах которой находятся положительные ионы, а между ними движутся свободные электроны (электроны проводимости). Электроны проводимости ведут себя подобно одноатомному идеальному газу. В промежутках между соударениями они движутся совершенно свободно, пробегая в среднем некоторый путь λ. Однако, в отличие от атомов газа, пробег которых определяется соударением атомов друг с другом, электроны сталкиваются преимущественно не между собой, а с ионами кристаллической решетки. Эти столкновения приводят к установлению теплового равновесия между электронным газом и кристаллической решеткой.

В отсутствии внешнего электрического поля электроны проводимости совершают хаотическое тепловое движение со средней квадратичной скоростью vкв., зависящей от температуры металла (vкв ~ √Т). Когда к металлу приложено внешнее электрическое поле, электроны проводимости начинают двигаться со средней скоростью vср., пропорциональной напряженности электрического поля Е, образуя электрический ток. Эта скорость пренебрежимо мала по сравнению со средней квадратичной скоростью, поэтому во всех расчетах, связанных со столкновениями электронов проводимости с решеткой, скоростью движения электронов считают среднюю квадратичную скорость vкв.

С точки зрения электронной теории сопротивление металлов обусловлено соударениями электронов проводимости с ионами кристаллической решетки. С ростом температуры сопротивление металлических проводников увеличивается, так как, чем выше температура, тем интенсивнее колебания кристаллической решетки и тем чаще электроны сталкиваются с ними. Экспериментально установлено, что зависимость сопротивления чистых металлов от температуры выражается формулой R = Ro (1 + αt). Коэффициент пропорциональности α называют температурным коэффициентом сопротивления (α > 0).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

рефераты
Новости