рефераты рефераты
Главная страница > Реферат: Ядерная опасность. Семипалатинский полигон  
Реферат: Ядерная опасность. Семипалатинский полигон
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Ядерная опасность. Семипалатинский полигон

Можно рассмотреть и другие ситуации, при которых общественные издержки защиты будут гораздо больше, например в случае загрязне­ния Sr90. Без существенной перестройки всего сельскохозяйственного производства в этой ситуации было бы нельзя добиться значительного снижения загрязнения рациона детей, подростков и взрослых людей.

О целесообразности тех или других оздоровительных мероприя­тий можно судить на основании оценки возможных последствий облуче­ния, с одной стороны, и общественных издержек защиты — с другой. Од­нако нельзя рассчитывать на точность подобных оценок. Наряду с не­возможностью точных оценок опасности от облучения в малых дозах, нельзя предвидеть и размеры общественных издержек на оздорови­тельные мероприятия. Как и во многих других проблемах, связанных с благосостоянием человека, здесь необходим тщательный анализ всей доступной информации, и его невозможно заменить какой-либо прос­той формулой. Тем не менее, соответствующие радиобиологические кри­терии все же необходимы: во-первых, нужны рекомендации относи­тельно наименьших значений доз, начиная с которых следует что-то предпринимать для ограничения облучения, если общественные издерж­ки невелики; во-вторых, следует выработать принципы оценки размеров радиационной опасности при данных уровнях облучения»

Облучение от контролируемых источников

Если источник облучения контролируется, например ядерный реак­тор при нормальных условиях работы, то регулированием режима работы оборудования можно добиться того, чтобы дозы облучения на­селения не достигали неприемлемых уровней. Можно было бы исклю­чить любое вмешательство в привычный образ жизни населения и в снабжение его продовольствием, если бы контрольная система давала соответствующее предупреждение об изменениях мощности выбросов.

В ситуациях такого рода имеется много общего с защитой населе­ния, от неконтролируемых источников и защитой персонала, работающе­го с излучениями. Методы определения размеров загрязнения окру­жающей среды одинаковы независимо от того, является источник контролируемым или неконтролируемым. Опасность, связанная с дан­ным уровнем облучения, не зависит от типа источника, поэтому для оценки биологических последствий облучения человека пригодны одни и те же критерии (т. е. рекомендуемые пределы облучения). Однако, когда уровни облучения становятся такими, что требуются решительные меры по защите населения, то эти два типа ситуаций будут резко раз­личаться. Если источник не поддается контролю, то соответствующие меры заключаются в оценке опасности от облучения по сравнению с общественными издержками по защите. В случае контролируемого ис­точника оператор установки обязан следить за тем, чтобы уровень об­лучения не превысил предела, установленного для профессионального облучения.

Рекомендуемые пределы дозы облучения в окружающей среде

Рекомен­дуемые пределы облучения в окружающей среде можно определить как уровни облучения, которые не следует превышать без тщательной оценки возможных размеров опасности облучения по сравнению с об­щественными издержками по ее ликвидации. Эти общественные издерж­ки оцениваются как своего рода новая «опасность», сопряженная с осуществлением специальных мероприятий по здравоохранению.


БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ. МЕХАНИЗМ БИОЛОГИЧЕСКОГО ДЕЙСТВИЯ ИЗЛУЧЕНИЯ

Действие излучения на организм человека начинается с физического процесса - взаимодействия излучения с веществом, т.е. атомами и молекулами тканей и органов. При этом взаимодействии энергия квантов и частиц расходуется на ионизацию и возбуждение атомов и молекул. В зависимости от вида излучения и величины энергии механизм взаимодействия различен.

Протоны, а-частицы и электроны постепенно теряют свою энергию при столкновении с ядрами атомов и внешними электронами. Так как масса а-частиц и протонов значительна по сравнению с массой электронов атомов, с которыми они соударяются, то траектория а-частнц и протонов прямолинейна. Путь же электрона в веществе извилист, поскольку он обладает малой массой, легко изменяет направление под действием электрических полей атомов. Поэтому начальный пучок электронов в тканях имеет тенденцию к расхождению /рассеяние электронов/.

Биологическое действие ионизирующего излучения условно можно подразделить на; 1) первичные физико-химические процессы, возникаю­щие в молекулах живых клеток и окружающего их субстрата; 2) нару­шений функций целого организма как следствие первичных процессов.

В результате облучения в живой ткани, как и в любой среде, погло­щается энергия и возникают возбуждение и ионизация атомов облучае­мого вещества. Поскольку у человека (и млекопитающих) основную часть массы тела составляет вода (около 75 %), первичные процессы во многом определяются поглощением излучения водой клеток, ионизацией молекул воды с образованием высокоактивных в химическом отноше­нии свободных радикалов типа ОН или Н и последующими цепными каталитическими реакциями (в основном окислением этими радикала­ми молекул белка). Это есть косвенное (непрямое) действие излучения через продукты радиолиза воды. Прямое действие ионизирующего излу­чения может вызвать расщепление молекул белка, разрыв наименее проч­ных связей, отрыв радикалов и другие денатурационные изменения.

Необходимо заметить, что прямая ионизация и непосредственная передача энергии тканям тела не объясняют повреждающего действия излучения. Так, при абсолютно смертельной дозе, равной для человека 6 Гр на все тело, в 1 см3 ткани образуется 1015 ионов, что составляет одну ионизованную молекулу воды из 10 млн. молекул.

В дальнейшем под действием первичных процессов в клетках воз­никают функциональные изменения, подчиняющиеся уже биологическим законам жизни и гибели клеток.

Наиболее важные изменения в клетках: а) повреждение механиз­ма митоза (деления) и хромосомного аппарата облученной клетки. При­чем самые ранние эффекты в клетках вызываются не митотической ги­белью, а обычно связаны с повреждением мембран; б) блокирование процессов обновления и дифференцировки клеток; в) блокирование процессов пролиферации и последующей физиологической регенерации тканей.

Наиболее радиочувствительными являются клетки постоянно обновляющихся (дифференцирующихся) тканей некоторых органов (костный мозг, половые железы, селезенка и т. п.) Причем стволовые и пролиферативные клетки, претерпевающие множество делений, наиболее радиочувствительны. Изменения на клеточном уровне, гибель клеток приводят к таким нарушениям в тканях, в функциях отдельных орга­нов и в межорганных взаимосвязанных процессах организма, которые вызывают различные последствия для организма или гибель организма.


ВОЗМОЖНЫЕ ПОСЛЕДСТВИЯ ОБЛУЧЕНИЯ ЛЮДЕЙ

Соматические (телесные) эффекты — это последствия воздействия облучения на самого облученного, а не на его потомство. Соматические эффекты облучения делят на стохастические (вероятностные) и нестохастические.

К нестохастическим соматическим эффектам относят поражения, вероятность возникновения и степень тяжести которых растут по мере увеличения дозы облучения и для возникновения которых существует дозовый порог. К таким эффектам относят, например, локальное незлокачественное повреждение кожи (лучевой ожог), катаракта глаз (потемнение хрусталика), повреждение половых клеток (кратковременная или постоянная стерилизация) и др. Время появления максимального эффекта также зависит от дозы: после более высоких доз он наступает раньше.


ЛУЧЕВАЯ БОЛЕЗНЬ ЧЕЛОВЕКА

Гибель клетки и утрата функций тканей и органов приводят к по­явлению клинических симптомов у облученного человека, называемых радиационными синдромами. В связи с различием в радиочувствитель­ности клеток, структуре и функциях каждой ткани дисфункция органов начинается в разные сроки и после различных доз. Теоретически при од­нородном облучении всего тела дозой, превышающей некоторый порог, можно выделить три основных синдрома; нервно-васкулярный, желудочно-кишечный и гематологический. На практике эти синдромы часто сливаются и их трудно распознать в отдельности.

Лучевую болезнь подразделяют на острую и хроническую. Течение лучевой болезни различной степени тяжести может проходить в стертой или явно выраженной форме, что зависит от суммарной дозы и ритма облучения.

В выраженной форме лучевой болезни четко различают период пер­вичной реакции, скрытый (латентный) период формирования болезни, восстановительный период и период отдаленных последствий и исходов заболевания.

Первоначальные явные симптомы облучения всего тела проявляются в течение первых 48 ч. К ним относятся желудочно-кишечные (анорексия, тошнота, рвота, диарея, кишечные спазмы, повышенное слюноотде­ление, дегидратация) и нервно-мышечные (чувство усталости, апатия, повышенное потоотделение, головные боли, гипотензия). Вероятность н длительность до момента проявления этих симптомов зависят от до­зы. Например, доза, вызывающая рвоту у 50 % облученных, составляет около 2 Гр, а период до ее появления примерно 3 ч; доза 3 Гр вызы­вает рвоту у 100 % облученных через 2 ч.

Дозы порядка нескольких грей приводят к костно-мозговому син­дрому и лейкопении. Концентрация лимфоцитов — самый ранний чувст­вительный симптом поражения крови, причем дозы 1—2 Гр снижают в их концентрацию примерно до 50 % нормы через 48 ч после облучения .

Время проявления первичной реакции зависит от дозы облучения. Лучевая болезнь возникает при дозе более 1 Гр у большинства постра­давших.

Латентный период—кажущееся клиническое благополучие—ко­леблется у человека от 14 до 32 сут в зависимости от тяжести поражения. При дозе существенно большей 10 Гр после первичной реакции почти сразу наступает последняя фаза болезни. При дозе менее 1 Гр клинические симптомы острой лучевой болезни не развиваются.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

рефераты
Новости