рефераты рефераты
Главная страница > Реферат: Тепловые преобразователи  
Реферат: Тепловые преобразователи
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Тепловые преобразователи

Реферат: Тепловые преобразователи

Санкт-Петербургский Государственный Политехнический Университет

Тепловые преобразователи

Работу выполнила

Курашина О.В.

Электромеханический факультет

Группа № 3025/1

2007г.


Оглавление

1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАСЧЕТА ТЕПЛОВЫХ ПРЕОБРАЗОВАТЕЛЕЙ

2. ТЕРМОЭЛЕКТРИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ, ИХ ПРИНЦИП ДЕЙСТВИЯ И ПРИМЕНЯЕМЫЕ МАТЕРИАЛЫ

3. УДЛИНИТЕЛЬНЫЕ ТЕРМОЭЛЕКТРОДЫ, ИЗМЕРИТЕЛЬНЫЕ ЦЕПИ, ПОГРЕШНОСТИ ТЕРМОПАР

4. ТЕРМОРЕЗИСТОРЫ, ОСНОВЫ ИХ РАСЧЕТА И ПРИМЕНЯЕМЫЕ МАТЕРИАЛЫ

5. ИЗМЕРИТЕЛЬНЫЕ ЦЕПИ ТЕРМОРЕЗИСТОРОВ

6. РАЗНОВИДНОСТИ ТЕРМОЧУВСТВИТЕЛЬНЫХ ЭЛЕМЕНТОВ


1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАСЧЕТА ТЕПЛОВЫХ ПРЕОБРАЗОВАТЕЛЕЙ

Основным уравнением теплового преобразования является уравнение теплового баланса, физический смысл которого заключается в том, что вся теплота, поступающая к преобразователю, идет на повышение его теплосодержания QTC и, следовательно, если теплосодержание преобразователя остается неизменным (не меняется температура и агрегатное состояние), то количество поступающей в единицу времени теплоты равно количеству отдаваемой теплоты. Теплота, поступающая к преобразователю, является суммой количества теплоты QЭ, создаваемой в результате выделения в нем электрической мощности и количества теплоты QT0, поступающей в преобразователь или отдаваемой им в результате теплообмена с окружающей средой;

Теплосодержание при неизменном агрегатном состоянии вещества зависит от массы т и удельной теплоемкости с материала преобразователя и связано с температурой в преобразователя формулой QTC = тсθ.

Теплообмен осуществляется тремя различными способами.

При теплообмене посредством теплопроводности перенос тепловой энергии происходит только путем взаимодействия частиц, находящихся в непосредственном соприкосновении друг с другом и имеющих различную температуру. Теплообмен путем теплопроводности в чистом виде имеет место только в твердых телах.

Теплообмен посредством конвекции совершается путем перемещения материальных частиц и может иметь место только в жидкостях или газах. Если причиной движения потоков жидкости или газа является неодинаковая плотность среды, вызванная разностью температур, то говорят о естественной конвекции. Движение потоков под действием внешних причин вызывает вынужденную конвекцию

Третьим способом теплообмена является теплообмен посредством излучения. Тепловое излучение представляет собой поток электромагнитных волн, излучаемых телом за счет его тепловой энергии и полностью или частично поглощаемых другими телами.

На практике обычно имеет место комбинация различных способов теплообмена, которые могут быть учтены приводимыми ниже формулами.

Теплопроводность. Распространение теплоты путем теплопроводности определяется законом Фурье q = —К grad в, где q — тепловой поток, представляющий собой коли-чество теплоты, переданной в единицу времени через единицу поверхности, Вт/м2;

grad Q = dQ/dl — градиент температуры; λ — теплопроводность, Вт/(м-К).

Теплопроводность зависит от природы и физического состояния вещества. В анизотропных телах она зависит, кроме того, от направления распространения теплоты. Лучшими проводниками теплоты являются металлы. Наименьшей теплопроводностью обладают газы. Для газов теплопроводность зависит не только от состава газа, но и от температуры и при большом разрежении — от давления.

Полный тепловой поток, создаваемый разностью температур, определяется формулой

,                                                              (1)

где GQ — тепловая проводимость среды; RQ - тепловое (или термическое) сопротивление среды.

 Тепловая проводимость среды зависит от теплопроводности, определяемой по справочным данным из геометрических соотношений, и для ее расчета можно использовать аналогичные формулы электрической проводимости, заменив удельную проводимость теплопроводностью.

Тепловая проводимость плоской стенки GQ = lS/d, где S — площадь стенки; d — толщина стенки.

Тепловая проводимость цилиндрической стенки

,

где l — длина цилиндра; d1, d2 — диаметры соответственно внешней и внутренней стенок цилиндра.

Конвекция. Полный тепловой поток в результате теплоотдачи определяется формулой Ньютона

,                                                                            (2)

где x — коэффициент теплоотдачи, Вт/(м2-К); S — поверхность тела; ΔQ — разность температур окружающей среды и тела. Коэффициент теплоотдачи при естественной и вынужденной конвекции рассчитывается на основании теорий теплового и геометрического подобий.

При искусственной конвекции при поперечном омывании цилиндра (рис. 1, а) коэффициент теплоотдачи для газов выражается формулой

                                                            (3)

где d — диаметр цилиндра; υ — скорость движения газа; ν — кинематическая вязкость, равная абсолютной вязкости, отнесенной к плотности вещества; λ — теплопроводность газа; сип являются функциями скорости газа и размеров цилиндра и определяются по предвари тельно рассчитанной величине, называемой критерием Рейнольдса, Re = vd/v, из табл. 11-1.


а) б)

90° 70° 50° 30° 10°

Рис. 1

Q,ºC

ν, 1·10-6

м2/c

λ, 1·10-2

Вт/(м·К)

0 13,70 2,33
20 15,70 2,56
100 23,78 3,02
500 80,40 5,46

Таблица 1 Таблица 2

с n
5-80 0,93 0,40

80-5·103

0,715 0,46

5·103

0,226 0,60

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости