рефераты рефераты
Главная страница > Реферат: Реализация хладоресурса углеводородных топлив в силовых и энергетических установках  
Реферат: Реализация хладоресурса углеводородных топлив в силовых и энергетических установках
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Реализация хладоресурса углеводородных топлив в силовых и энергетических установках

Химический хладоресурс так же, как и физический, может использоваться при подводе тепла к топливу непосредственно от теплонапряженных элементов при их охлаждении или же как промежуточный теплоноситель (например, в топливо-воздушном или топливо-газовом теплообменнике). При этом продукты химических превращений топлив могут быть перед подачей в камеру сгорания использованы в качестве рабочего тела для привода агрегатов системы топливопитания двигателя. Появляется возможность разработки комбинированных ВРД новых схем, работающих по более современным, чем цикл Брайтона, термодинамическим циклам за счет использования возможностей топлива как хладагента, рабочего тела с высокой газовой постоянной и высококалорийного горючего.

Исследования закономерностей термической деструкции топлив проводились при атмосферном и повышенном давлениях и температурах до 900 oС на экспериментальной установке (Рис.4). В результате проведенных опытов установлено, что при температурах ниже 575-600 оС газообразование практически не наблюдается. Повышение температуры выше 575-600 оС приводит к появлению газообразных продуктов, что свидетельствует о термическом разложении топлив. Увеличение времени пребывания (контакта) также способствует росту газообразования. Изучение же закономерностей образования отложений при термической деструкции показало, что в условиях турбулентного течения металлическая поверхность покрывается тонким сплошным слоем кокса.

Как следует из вышеизложенного, для установок многоразового использования образовавшиеся отложения ставят проблему по их очистке.

В главе 6 приведены физико-механические, физико-химические, химико-термические способы удаления отложений.

Физико-механические методы очистки загрязненных коксоотложениями трубопроводов основаны, как правило, на разрушении отложений путем промывки моющими средствами с ультразвуковым или термоакустическим воздействием. Они используются в основном для очистки неответственных деталей или деталей, механическая обработка которых не представляет опасности с точки зрения нарушения их прочности или состояния рабочей поверхности. Этот метод обладает невысокой эффективностью при очистке трубопроводов сложной конфигурации (колен с большими углами загиба, змеевиков и трубопроводов, имеющих глухие полости, впадины и экранированные зоны, исключающие непосредственное попадание в них ультразвуковых волн и т.д.). С помощью этого метода (Табл.2) недостаточно эффективно удаляются твердые отложения, т.к. для этого, как показывают опыты, увеличение трения вследствие торможения потока жидкости недостаточно. Поэтому очистка трубопроводов требует значительного времени и, как правило, разборки установок. Несмотря на то, что этот метод позволяет производить очистку трубопроводов большой длины, тем не менее эта длина ограничена вследствие снижения интенсивности колебаний вдоль трубы. Имеет место продольная неравномерность очистки трубопровода, т.к. начальный участок очищается лучше, чем остальные.

Таблица 2.

Эффективность очистки физико-механическими методами

Температура образования кокса оС

Степень очистки %

250-350

350-550

550-700

700-800

До 20

20-30

25-40

90-95

Физико-химические методы (Табл.3) являются более эффективными по сравнению с физико-механическими и основаны на удалении коксоотложений посредством щелочных соединений, поверхностно-активных веществ, синтетических моющих средств и растворяюще-эмульгирующих средств.

Таблица 3.

Эффективность очистки физико-химическими методами

Температура образования Степень очистки *

коксоотложений, оС

СМС РЭС
300 25-45 60-70
400 20-30 40-50
500 15-20 30-40
600 10-15 20-30

* Время очистки - 1 час.

Полученные результаты показали, что посредством СМС и РЭС удаляются в основном смолообразные вещества, образованные при температурах поверхности ниже 400 оС. Однако СМС и РЭС малоэффективны при очистке от асфальтено-смолистых и коксообразных веществ, образованных при температурах стенки выше 400 оС. При этом более эффективным средством оказались РЭС.

Недостатком данного метода является: 1. Низкая эффективность удаления твердого кокса. 2. Более интенсивное повторное коксование. 3.Большая длительность процесса очистки.

Химико-термические методы (Табл.4) являются наиболее эффективными по сравнению с выше рассмотренными. Как видно из этой таблицы, химико-термические методы позволяют достичь наиболее высокой степени очистки от кокса (80-100%). Метод выжигания отложений оказался наиболее эффективным. Экспериментальное исследование закономерностей выгорания коксоотложений в потоке О2 проводилось на установке микроэлементного анализа (Рис.8). Через трубку с коксом, нагреваемую снаружи газовой горелкой до температур 800-980 оС, продувался поток О2 или смесь О2+N2 при температуре Т@20 оС.

Недостатком этого метода является высокая энергоемкость процесса, и кроме того, сам процесс удаления кокса путем выжигания осуществляется при высоких температурах (800-950 оС), при которых возможны деформация и разрушение очищаемых элементов.

Таблица 4.

Эффективность очистки химико-термическими методами

Температура образования кокса оС

Степень очистки, %
Расплав солей Расплав щелочей Сгорание в воздушном потоке

250-350

350-550

550-700

700-800

90-95

87-93

85-90

85-90

90-95

86-94

86-90

85-90

95-100

92-98

92-95

90-95

Страницы: 1, 2, 3, 4, 5, 6, 7, 8

рефераты
Новости