рефераты рефераты
Главная страница > Реферат: Основные принципы магнитного резонанса  
Реферат: Основные принципы магнитного резонанса
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Основные принципы магнитного резонанса

В состоянии термодинамического равновесия результирующая макроскопическая намагниченность М направлена вдоль внешнего магнитного поля В0. Величина намагниченности М0 для комнатных температур может быть получена из следующего уравнения:

где N = N+ + N~ - полное число ядерных спинов, находящихся в единице объема. Из формулы видно, что макроскопическая намагниченность возрастает с увеличением напряженности магнитного поля В0 и гиромагнитного отношения у/ и убывает с ростом температуры Т. Такое поведение намагниченности М определяет большое число эффектов, наблюдаемых в ЯМР.

Время установления теплового равновесия между спиновой системой и окружающей средой, которую даже в жидкостях принято называть решеткой, определяется как время спин-решеточной релаксации. Эта величина описывает процесс установления равновесия, т.е. приближение z-компонен-ты намагниченности Mz к равновесному значению М0, которое устанавливается в спиновой системе спустя длительный период времени. Равновесная намагниченность устанавливается параллельно внешнему магнитному полю В0, поэтому спин-решеточную релаксацию называют также продольной релаксацией.

Непосредственно после открытия явления ЯМР Феликс Блох на основе классического подхода описал поведение намагниченности М, которая характеризуется компонентами Мх, Му и Mz, с помощью системы дифференциальных уравнений. Эти уравнения называются уравнениями Блоха.

Уравнения Блоха позволяют достаточно просто описать основные экспериментальные данные: 1) Если направления намагниченности и магнитного поля в исходный момент не совпадают, то намагниченность совершает прецессию относительно направления магнитного поля. 2) Спустя достаточно длительный промежуток времени после воздействия возбуждения в системе устанавливается равновесная намагниченность, компонента Мг которой вдоль направления магнитного поля равна М0, а поперечная компонента намагниченности, перпендикулярная направлению внешнего магнитного поля, равна нулю. Экспоненциальное приближение Mz к равновесному значению М0 описывается уравнением

Постоянная Tj называется временем продольной релаксации. Соответственно процесс распада поперечной намагниченности описывается уравнениями для Мх и Му:

Классическое уравнение движения, описывающее прецессию намагниченности в магнитном поле без учета релаксации, имеет вид

Уравнения Блоха получаются путем феноменологического введения в уравнение релаксационных слагаемых в форме правых частей уравнений и:


В типичном ЯМР эксперименте наряду со статическим магнитным полем В0, направленным вдоль оси z, имеется еще и переменное РЧ поле с частотой О), магнитная составляющая которого направлена перпендикулярно полю В0, например, вдоль оси х, и осциллирует с частотой V = t, как правило, много меньше внешнего магнитного поля В0. Линейно поляризованное переменное магнитное поле можно представить в виде разложения по двум компонентам, которые вращаются в противоположных направлениях с круговыми частотами ±, частота вращения которой относительно оси z равна Шг Соответствующим преобразованием координат можно не только формально упростить уравнения, но и преобразовать их так, что они приобретут более наглядный вид. Сложное движение вектора намагниченности в пространстве можно разложить на два движения: движение во вращающейся системе координат и одновременное движение этой системы координат относительно лабораторной системы координат, фиксированной в пространстве. Обычно частоту вращения выбирают равной частоте РЧ поля, 0)г = О), так как в этом случае поле В; во вращающейся системе координат будет неподвижным. Обозначим когерентную компоненту намагниченности вдоль оси х через М х', а сдвинутую на 90° вдоль оси у' - через М ':


Уравнения Блоха во вращающейся системе координат принимают следующий вид:

гдеопределена формулой.

С помощью рис. 1.3 попытаемся построить простое представление о процессах, происходящих во вращающейся системе координат. Так как система координат вращается с круговой частотойравной частоте поля Bi, то поле Bi будет неподвижным в этой системе координат. При этом удобно кроме суммарного поля Вг, складывающегося из полей В0 и Bi, определить еще и эффективное поле Beff, которое является векторной суммой полей к. Можно показать, что уравнения, описывающие затухающее движение и прецессию спинов в этом эффективном магнитном поле, имеют вид -<1.16). Особенно простым будет вид этих уравнений, еслии эффективное поле Beff равно полю i ' В\. В этом случае частота прецессии со/ формально удовлетворяет условию резонанса, в котором вместо В0 используется Bi:

Если вначале вектор намагниченности направить вдоль оси z, и включить кратковременно РЧ поле, например, на время /, то вектор намагниченности отклонится на некоторый угол в направлении оси у ' в плоскости у ' z, а затем вновь возвратится к оси z. Если ВЧ поле отключается в момент времени, когда вектор намагниченности расположится строго вдоль оси у ', то говорят, что на систему воздействует 90°-ный или-импульс. Если при той же напряженности магнитного поля выбрать длительность РЧ импульса такую, что вектор намагниченности отклонится от оси z в плоскости у ' z на 180°, то такой импульс называется 180°-ным или-импульсом. В общем случае путем соответствующего выбора Beff и длительности импульса можно развернуть вектор намагниченности в плоскости у' z в произвольном направлении.


Если под действием РЧ импульса намагниченность отклонится от оси z, то после выключения РЧ импульса намагниченность, в результате появления у нее поперечных компонент, начнет прецессировать вокруг направления поля В0. Прецессия намагниченности создает модуляцию во времени связанного с этой намагниченностью магнитного поля. Если мы поместим образец в приемную катушку, то изменяющееся во времени магнитное поле создаст малое индукционное напряжение, которое может быть зарегистрировано с помощью соответствующих методов. Амплитуда этого сигнала пропорциональна резонансной частоте со/ и намагниченности м0; затухание сигнала во времени называют спадом свободной индукции.

1.1.4 Спин-решеточная релаксация

Изменение во времени намагниченности мг может быть описано уравнениями Блоха. Решением этих уравнений для мъ является экспоненциальная функция с характерным временем Tlt которое называется временем продольной или спин-решеточной релаксации:

Если после воздействия радиочастотного импульса спиновая система свободно эволюционирует, то она стремится к состоянию больцмановского равновесия. В частности, после воздействия 180°-ного импульса, приводящего к равенству Mz = -Mo, поведение намагниченности Mz описывается экспоненциальной функцией, которая при t = 1п2 • Т\ = 0,69 • Т\ обращается в нуль, и это обстоятельство можно использовать для определения значения Т\ так называемым нуль-методом.


При использовании обычного способа регистрации намагниченность —Mz, направленная после воздействия 180°-ного импульса вдоль оси —z, дает такой же малоинтенсивный сигнал, как и +MZ, ввиду того, что он не сопровождается возникновением отличного от равновесного значения поперечной намагниченности в плоскости ху. Для определения времени продольной релаксации необходимо сначала с помощью L 80°-ного импульса изменить равновесную ориентацию вектора намагниченности вдоль оси +z на противоположную, ориентировав ее вдоль оси —z, а затем, спустя некоторое время задержки, провести измерение значения, которое устанавливается за счет продольной релаксации. Измерениеможно провести после воздействия на систему 90°-ного импульса, который преобразует z-намагниченность в поперечную, что дает возможность зарегистрировать сигнал свободной индукции, пропорциональный. Так как сначала намагниченность инвертируется, а затем наблюдается восстановление ее равновесного значения, то этот метод называют методом инверсии-восстановления и обозначают следующим образом:

1.1.5 Распад поперечной намагниченности и спйн-спиновая релаксация

Второй тип релаксации, с которым нам предстоит познакомиться, это поперечная релаксация. С этим механизмом релаксации теснейшим образом связана ширина линии ЯМР - параметр, характеризующий разрешающую способность спектров высокого разрешения. Кроме того, различие времен поперечной релаксации для каждого типа тканей очень важно для разрешения по контрасту изображений в ЯМР-томографии.

Страницы: 1, 2, 3

рефераты
Новости