рефераты рефераты
Главная страница > Курсовая работа: Вимірювання електричних струмів і напруг  
Курсовая работа: Вимірювання електричних струмів і напруг
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Вимірювання електричних струмів і напруг

Для розширення границь вимірювання, електромагнітні амперметри ніколи не використовують з шунтами, але ними часто користуються з трансформаторами струму.

Магнітоелектричні амперметри значно складніші й дорожчі за електромагнітні. У них обмотки рамок, що створюють обертовий момент у приладах, розраховані на струми лише у десятки — сотні міліампер, через наявність підводу до них струму через пружини, що мають дуже малу площу поперечного перерізу і нездатні пропускати більш значний струм.

Тому ці прилади завжди мають внутрішній шунт, що пропускає через себе більшу частину струму. Коло ж рамки вимірювального механізму тут використано як мілівольтметр, що вимірює падіння напруги на цьому шунті, пропорційне величині струму, який проходить через шунт. Шкалу такого приладу градуюють у амперах, якщо прилад має одну границю виміру. Але часто магнітоелектричні амперметри виготовляють з універсальними шунтами, придатними для користування з декількома границями вимірів. У цьому разі шкалу градуюють лише неіменованими поділками. Схему такого амперметра наведено на рис. 2.

Рис. 2. Схема магнітоелектричного амперметра

У всіх магнітоелектричних амперметрах, послідовно з обмоткою рамки, ввімкнено резистор, виконаний з манганіну. Це суттєво зменшує похибку приладу, спричинену нагрівом обмотки рамки як протіканням власного струму, так і зміною температури довкілля.

Електродинамічні амперметри в основному використовують як зразкові електровимірювальні прилади. Виготовляють їх на основі електродинамічного вимірювального механізму. Вони однаково придатні як для вимірів на постійному, так і на змінному струмі. Ці прилади за будовою значно складніші за електромагнітні й споживають більшу потужність. Будову електродинамічного вимірювального механізму зображено на рис. 3, о принципову схему електродинамічного амперметра, розрахованого на дві границі вимірювання струму, на рис. 4.

Рис. 3. Вимірювальний механізм електродинамічної системи

Перемикання границь вимірювання струмів в цій схемі виконується перемикачем.

Рис. 4. Принципові схеми електродинамічного амперметра


Особливістю електродинамічного амперметра є те, що його рамка живиться через спіральні пружини, які створюють обертовий момент протидії, але неспроможні витримати скільки-небудь значний струм. Саме тому рамку приєднано до шунта, створеного резисторами rш1 і rш2, так що більша частина вимірюваного струму проходить через шунт (при вмиканні на більшу границю вимірювань — через резистор rш1, а при вмиканні на меншу границю вимірювань — через резистори rш1 і rш2), в рамку ж відгалужується лише частина вимірюваного струму, допустима по нагріванню як для обмотки рамки Wp, так і для спіральних пружинок, що підводять до рамки струм. Послідовно з рамкою ввімкнено резистори rчк і rтк, які виконано з манганінового проводу, що має дуже малий температурний коефіцієнт опору. Ці резистори зменшують залежність величини струму рамки Ір від зміни величини опору рамки rр при її нагріві, незалежно від того, чим викликаний цей нагрів — чи зміною температури довкілля, чи проходженням через рамки струму Ір. Конденсатор Ск разом з резистором rчк є елементами частотної компенсації, яка забезпечує збіг показів амперметра при вимірах на постійному та змінному струмі.

Слід зауважити, що така проста схема компенсації похибки на змінному струмі від наявної індуктивності рамки буває ефективною при вимірах у досить широкому діапазоні зміни величини частоти джерела змінного струму (від кількох десятків до кількох сотень герц).

Феродинамічні амперметри, як і електродинамічні, мають одну чи дві нерухомі обмотки, розташовані на феромагнітному осерді (як показано на рис. 5), і рухому обмотку-рамку, яка живиться через пружинки, не розраховані на проходження по них значних струмів. Тому за схемою феродинамічні амперметри не відрізняються від електродинамічних. Перевагою феродинамічних амперметрів є їхня значно менша споживана потужність, більший обертовий момент і пов'язана з цим більша надійність у роботі. Вони також краще захищені від впливу зовнішніх магнітних полів.


Рис. 5. Вимірювальний механізм феродинамічної системи

2.2 Вольтметри й мілівольтметри

Вольтметр — це прилад для вимірювання ЕРС чи напруги в електричних колах. Він приєднується паралельно з устаткуванням, де бажано виміряти якусь з цих величин.

Вольтметри виконують на основі:

·  магнітоелектричних;

·  електродинамічних;

·  феродинамічних;

·  електромагнітних;

·  теплових;

·  електростатичних вимірювальних механізмів.

Магнітоелектричні вольтметри використовують для вимірів напруг постійного струму. Електродинамічні та електростатичні вольтметри можуть бути використані для вимірювань як на постійному, так і на змінному струмах. Електромагнітні й феродинамічні вольтметри при використанні відповідних матеріалів при їх виготовленні (наприклад, пермалою) та при відповідній технології обробки цих матеріалів також можуть бути використані як на постійному, так і на змінному струмах.

Обмотки вимірювальних механізмів вольтметрів магнітоелектричної, електродинамічної, феродинамічної та електромагнітної систем намагаються виконати з якомога більшою кількістю витків, щоб одержати відхилення покажчика вольтметра до кінцевої позначки шкали при можливо меншому значенні струму, споживаного обмоткою (чи обмотками) вимірювального механізму. Зменшення цього струму дасть змогу зменшити об'єм, масу і вартість приладу.

У всіх вольтметрів (за винятком електростатичних) послідовно з обмотками вимірювального механізму (а у теплових — послідовно з розжарюваним дротом) ввімкнено додатковий опір, виконаний у вигляді котушок чи пластин з обмоткою з тонкого проводу, що має великий питомий електричний опір та малий температурний коефіцієнт опору (це манганін чи константан). Цей додатковий опір змонтовано всередині корпуса вольтметра, поряд з вимірювальним механізмом, чи у частині об'єму корпуса, відокремленого від вимірювального механізму теплоізоляційною перегородкою для зменшення впливу тепла, що виділяється обмотками котушок чи пластин додаткового опору, на вимірювальний механізм.

Додаткові опори, які виконані на пластинах, мають сприятливі умови для охолодження, тому їхня обмотка може бути виконана дротом меншого діаметра, ніж обмотка котушкового додаткового опору. При цьому витрата дроту високого питомого опору буде значно меншою, ніж у котушкового додаткового опору. Це зменшує грошові витрати у виробництві таких опорів. Але ізоляційні пластини, що разом з накладеною на них обмоткою підлягають термічній обробці при температурах, близьких до 100 °С, часто розривають накладений на них з натягом дріт, через відмінні величини температурних коефіцієнтів лінійного розширення пластин і дроту. Через це котушкові додаткові опори слід визнати більш надійними і більш технологічними.

Стаціонарні вольтметри, які встановлюють на щитах і пультах управління, звичайно виготовляють кожний на одну певну величину номінальної напруги і градуюють безпосередньо в одиницях напруги (у вольтах). Якщо стаціонарні вольтметри призначені для використанні з вимірювальними трансформаторами напруги, то їх виконують на напругу повного відхилення 100 В, але шкалу градуюють згідно з напругою первинної обмотки вимірювального трансформатора напруги (частіш за все — у кіловольтах). При цьому на шкалі приладу обов'язково роблять напис, де вказують, з яким трансформатором напруги необхідно користуватися цим вольтметром.

Якщо стаціонарний вольтметр призначено для вимірів з окремим зовнішнім додатковим опором, його також градуюють згідно з наявністю цього опору, а на шкалі робиться попереджувальний напис про вихідні д^ні цього додаткового опору.

Рис. 6. Схема триграничного вольтметра

Переносні вольтметри у більшості випадків виготовляють на декілька границь вимірювання напруги. У цих вольтметрів є декілька внутрішніх додаткових опорів, що послідовно з'єднані як між собою, так і з обмоткою вимірювального механізму. Схему триграничного вольтметра, розрахованого на границі вимірювань 75... 150...300 В, зображено на рис. 6. Зазначимо, що додаткові опори, зображені на схемі RД1, RД2 і RД3, в дійсності можуть складатись із кількох котушок (кожний), одну з яких використовують для того, щоб можна було при виготовленні вольтметра підігнати величину загального опору приладу для кожної границі вимірювань до величини, вказаної на шкалі цього приладу.

Вольтметр перемикають для вимірювань при різних напругах шляхом приєднання одного провідника, що підводить напругу від місця вимірювання до відповідного затискача вольтметра.

Звичайно, для безпеки на час перемикання границь вимірів напруги контрольоване цим вольтметром електричне коло необхідно вимкнути з мережі. Щоб кожного разу цього не робити, у багатьох випадках вольтметри виконують з важільними чи кнопковими перемикачами границь вимірювання.

Вольтметри з перемикачами можуть мати дещо складнішу схему. Наприклад, при перемиканнях границь виміру напруги виникає можливість не тільки змінювати величину додаткових опорів, а ще й перемикати з послідовного на паралельне з'єднання секції котушок вимірювального механізму електродинамічних і електромагнітних вольтметрів. Саме для цього котушки цих приладів заздалегідь намотують двома (а то й трьома) проводами паралельно. Такі схеми дають можливість суттєво зменшити потужність, споживану приладом при вимірах відносно високих напруг, порівняно з вольтметрами, схеми яких схожі на схему, що наведена на рис. 6.

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости