рефераты рефераты
Главная страница > Курсовая работа: Структурный анализ системы  
Курсовая работа: Структурный анализ системы
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Структурный анализ системы

Результаты сопоставления экспериментальных и теоретических рентгенограмм:

Рис. 19

Рис. 20

После уточнения с использованием программы PowderCell 2.4 результаты можно представить в виде следующей таблицы.

GdxBi1-xFeO3

Литературные данные

Параметры решётки, Å

Параметры решётки после уточнения, Å
х=0.05 а=5.56346 с=13.81309 а=5.56345 с=13.813
х=0.1 а=5.5600 с=13.7827 а=5.5559 с=13.7839
х=0.15 а=5.5676 с=13.6512 а=5.5659 с=13.6748
х=0.2 а=5.6160 с=13.4543 а=5.5405 с=13.4254

Заключение

В ходе выполнения работы были изучены физические основы методов рентгеноструктурного анализа твердых тел. Изучено специализированное программное обеспечение для расчетов теоретических дифрактограмм, уточнения параметров кристаллических решетки и построения элементарных ячеек.

На основании полученных данных можно сделать следующие выводы:

1. Экспериментально и теоретически исследованы структурные характеристики соединений системы GdxBi1-xFeO3 (x=0.05, 0.10, 0.15, 0.20).

2. Результаты исследования показывают, что образцы GdxBi1-xFeO3 обладают ромбоэдрической симметрией.


Список использованной литературы

1.  Уманский Я.С., Скаков Ю.А., Иванов А.Н., Расторгуев Л.Н. Кристаллография, рентгенография и электронная микроскопия. М.: Металлургия, 1982, 632 с.

2.  Миркин Л.И. Справочник по рентгеноструктурному анализу поликристаллов. М., Физматгиз, 1961.863 с.

3.  А. Гинье. Рентгенография кристаллов. Физматиздат, М., 1961

4.  "POWDER CELL - a Program for the Representation and Manipulation of Crystal Structures and Calculation of the Resulting X-ray Powder Patterns" Kraus, W.; Nolze, G. J. Appl. Cryst. (1996).29, pp.301-303

5.  Л.В. Мисак, А.С. Потужный ПРИМЕНЕНИЕ ПРОГРАММЫ "POWDER CELL" В ФИЗИКЕ ТВЕРДОГО ТЕЛА / Тез. докладов VII-ой Республ. научн. конф. студ. и аспир., "Новые математические методы и компьютерные технологии в проектировании, производстве и научных исследованиях", Гомель, 22-24 марта 2004. с.110-112.


Приложения

Приложение1

Пошаговая инструкция по работе с программой PowderCell.

Создание новой структуры

1.1 Нажмите кнопку  на панели инструментов.

1.2 В появившемся диалоговом окне (рис.1) введите название вещества, номер пространственной группы, параметры элементарной ячейки, координаты атомов в элементарной ячейке, значения структурного и температурного факторов.

Рис.1

Автоматически будет произведен расчет объёма элементарной ячейки, плотности вещества и т.д.

1.3 Активное окно примет вид, показанный на рис.2

Рис.2

Отображается структура вещества и его порошковая дифрактограмма.

Открытие существующего файла структуры.

2.1Нажмите на панели инструментов кнопку

2.2В открывшемся окне находим нужный файл. Файлы PowderCell имеют расширение *. cel и нажимаем кнопку “Открыть” (рис.3)

Рис. 1

2.3 Окно программы после открытия файла структуры имеет вид, показанный на рис.2

Манипуляции со структурой вещества

Группа дополнительных кнопок, показанная на рис.4 предназначена для управления изображением структуры. Назначение каждой кнопки соответствует изображению на ней. Также при наведении курсора мыши на кнопку появляется всплывающая подсказка. При щелчке правой кнопкой мыши на изображении структуры появляется контекстное меню (Рис.5), которое частично дублирует кнопки панели, показанной на рис.4, а также имеет несколько дополнительных функций по работе с изображением структуры: печать, экспорт и копирование в буфер обмена. Работа с порошковой дифрактограммой. Группа дополнительных кнопок, находящейся в правой части главного окна при активном окне “Порошковая дифрактограмма", предназначена для управления отображением порошковой дифрактограммы. Назначение каждой кнопки соответствует изображению на ней. Также при наведении курсора мыши на кнопку появляется всплывающая подсказка. При щелчке правой кнопкой мыши на изображении структуры появляется контекстное меню, которое частично дублирует кнопки панели управления дифрактограммой, а также имеет несколько дополнительных функций по работе с изображением дифрактограммы: печать, экспорт графики и данных, копирование в буфер обмена. Группа кнопок на главной панели инструментов (Рис.6): 1-якнопка - включение и выключение окна “Порошковая дифрактограмма", 2-я кнопка - настройка условий эксперимента, 3-я кнопка настройка параметров фаз, 4-я кнопка - отображение списка отражающих плоскостей.

Рис.6

При нажатии на кнопку 2 появится окно с настройками параметров эксперимента (рис.7), где можно настроить следующие параметры:

Тип источника излучения.

Длину волны Kα1 или Kα2 с учетом аномальной дисперсии

Геометрию эксперимента, щель постоянной или переменной ширины

Интервал значений 2θ и т.д.

Рис.7

Для рентгеновского излучения можно использовать следующий материал анода: Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ag и W. Только для этих излучений соответствующие поправки (глубина проникновения, массовый коэффициент поглощения) принимаются в учет при расчете порошковой дифрактограммы. Это важно, например, для количественного фазового анализа. Результирующая порошкограмма также зависит от используемой геометрии дифракции. PowderCell рассчитывает рассеяние в геометрии Брэгга-Брентано (Bragg-Brentano) и Гинье (Guinier). В этом случае предполагается использование {011} - кварцевого монохроматора.

При нажатии на кнопку 3 появляется окно, в котором http://users.omskreg.ru/~kolosov/kolosov/kolosov/public_html/computer/bam/a_v/v_1/powder/images/hkl1.gif для каждого pефлекса пpиводятся следующие данные: индексы Лауэ HKL, угол Бpэгга, соответствующее межплоскостное pасстояние d, интегpальная интенсивность, стpуктуpная амплитуда, фактоp повтоpяемости для данной плоскости pешетки, полная шиpина на полувысоте (FWHM) [5].


Страницы: 1, 2, 3, 4

рефераты
Новости