рефераты рефераты
Главная страница > Курсовая работа: Регулятор напряжения автомобильного синхронного генератора с когтеобразным ротором  
Курсовая работа: Регулятор напряжения автомобильного синхронного генератора с когтеобразным ротором
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Регулятор напряжения автомобильного синхронного генератора с когтеобразным ротором


part12-17.jpg

Достоинства такого генератора:

– простота конструкции;

– высокая удельная мощность;

– простота технического обслуживания;

– малый уровень шума;

– незначительные радиопомехи;

– значительный ресурс.

Недостатки:

– наличие щёточного узла;

– невозможно самовозбуждение, необходим первичный источник напря-жения (АКБ).

1.5.2 Выпрямитель

В данной ЭМС используется трёхфазный мостовой выпрямитель, так как именно такая конструкция позволяет обеспечить минимальный уровень пульсаций выходного напряжения. Схема реализуется на диодах.

Назначение выпрямителя – преобразовать трёхфазное переменное напряжение в постоянное. В современных генераторах уже имеется встроенный выпрямитель.

Схема выпрямителя представлена на рис. 3.


Принцип действия.

Рассмотрим работу схемы рис. 4 на активную нагрузку. С момента времени q1 ток проводят диоды VD1 и VD6, а остальные диоды находятся в непроводящем состоянии. Тогда к нагрузке приложено линейное напряжение uab, и выпрямленный ток Id протекает по контуру: обмотка фазы А – диод VD1 – нагрузка Rd – диод VD6 – обмотка фазы В. Этот процесс продолжается до момента времени q2. Начиная с этого момента времени напряжение ubc становится положительным, т.е. прямым для диода VD2 – он начинает проводить ток, а диод VD6 закроется. В момент времени q3 в работу вступает диод VD3, а диод VD1 закрывается, т.к. напряжение фазы В становится выше напряжения фазы А.

Далее через интервалы времени, равные p/3, происходят включения следующих пар диодов: VD2-VD4, VD3-VD5, VD5-VD1. Таким образом, длительность прохождения тока через каждый диод составляет 2p/3, а остальное время он закрыт.

Поочерёдная работа пар диодов в схеме приводит к появлению на сопротивлении нагрузки Rd выпрямленного напряжения, состоящего из частей линейных напряжений, приходящих на вход выпрямителя.

Рис.3.


Диаграммы токов и напряжение рассматриваемой трёхфазной мостовой схемы выпрямления приведены на рис. 4.

Рис. 4. Диаграммы напряжений и токов выпрямителя

 

1.5.3 Регулятор напряжения

В данной системе используется регулятор на основе микроконтроллера, управляющего силовым транзистором по принципу ШИМ. Принципиальная схема управления показана на рис. 5.

Рис. 5. Принципиальная схема управления током обмотки возбуждения.


Как видно из схемы, на вход регулятора подаётся выпрямленное напряжение Ud с блока диодов. Затем снизившись до необходимого уровня на делителе напряжений R12-R14 поступает на вход микроконтроллера DA2, который сравнивает его с заданным уровнем. Конденсатор С7 отвечает за продолжительность периодов ШИМ, а С8 вкупе с резистором R16 – за стабильность питания микроконтроллера. Свой сигнал на включение обмотки возбуждения (ОВ) микроконтроллер создаёт путём подачи управляющего тока базы вспомогательного транзистора VT4, в следствии чего, потенциал затвора силового транзистора IRF1 становится меньше потенциала истока, и он открывается. Время открытого состояния IRF1 зависит от скорости вращения ротора генератора и подключённой нагрузки. Дабы уберечь силовой транзистор в момент закрытия от перенапряжения из-за ЭДС самоиндукции обмотки возбуждения, установлен обратный диод VD7.

Глава 2. КОМПЬЮТЕРНАЯ МОДЕЛЬ СХЕМЫ УПРАВЛЕНИЯ ТОКОМ ВОЗБУЖДЕНИЯ ГЕНЕРАТОРА

 

2.1 Описание компьютерной модели

На рис. 6 изображена модель схемы управления током обмотки возбуждения. Вместо ШИМ контроллера DA2 установлен генератор импульсов V2, который создаёт периодические сигналы на открытие вспомогательного транзистора Q1, вследствие чего открывается силовой транзистор M1, замыкающий вывод обмотки возбуждения L1 на «массу». R3 – имитация сопротивления обмотки возбуждения. V1 – это источник постоянного напряжения 14 В, питающий обмотку возбуждения.

Рис. 6. Модель схемы управления током возбуждения.


Исходя из того, что в обмотка возбуждения имеет индуктивность L=66,2 мГн и активное сопротивление R=1,3 Ом, то постоянная времени переходного процесса Т=L/R=66,2/1,3=50,92 мсек. По правилам ТОЭ переходной процесс считается установившимся, если с момента его начала проходит (5 – 6)Т . В связи с этим убеждением, примерное время окончания переходного процесса 306 мсек, поэтому диаграммы будем строить на отрезке времени от 0 до 0,4 сек. Рассматривать будем 4 главных состояния:

– Частота импульсов ШИМ f=25 Гц, скважность Q=0,25, рис. 7;

– Частота импульсов ШИМ f=25 Гц, скважность Q=1, рис.8;

– Частота импульсов ШИМ f=10 кГц, скважность Q=0,25, рис.9 (а, б);

– Частота импульсов ШИМ f=10 кГц, скважность Q=1, рис. 10 (а, б).

На рис. 7 – 10 изображены следующие осциллограммы сверху – вниз:

– Напряжение генератора импульсов;

– Ток эмиттера вспомогательного транзистора Q1;

– Напряжение исток – сток силового транзистора М1;

– Мгновенное и среднее значение тока в обмотке возбуждения.

Рис.7


Рис. 8

Рис. 9а


Рис. 9б

Рис.10а


Рис. 10б

2.2 Выбор элементной базы

2.2.1 Выбор вспомогательного транзистора Q1

Для выбора биполярного транзистора необходимо знать его токи протекающие через базу – эмиттер и коллектор – эмиттер, а также выделяемую мощность потерь и предельное напряжение. Рассматривать будем 3 осциллограммы предельных режимов:

– Частота генератора импульсов f=25 Гц, скважность Q=0,25, рис. 11;

– Частота генератора импульсов f=10 кГц, скважность Q=1, рис. 12;

– Частота генератора импульсов f=10 кГц, скважность Q=0,5, рис. 13.

На рис. 11 – 12 изображены следующие осциллограммы сверху – вниз:

– Ток базы вспомогательного транзистора Q1;

– Ток коллектора вспомогательного транзистора Q1;

– Напряжение коллектор - эмиттер вспомогательного транзистора Q1;

– Среднее значение выделяющейся мощности.


Рис.11

Рис. 12


Рис. 13

Из полученных характеристик подбираем вспомогательный транзистор КТ301Ж. Диаметр транзистора d=5 мм, высота с учётом ножек h=18 мм. Цена транзистора 20 руб.

2.2.2 Выбор силового транзистора M1

Для выбора полевого транзистора необходимо знать его ток, протекающий через сток – исток, а также выделяемую мощность потерь напряжение сток – исток. Рассматривать будем осциллограммы режимов f=25 Гц, Q=0,25 рис. 14 и f=10 кГц, Q=1 рис.15.

На рис. 14 – 15 изображены следующие осциллограммы сверху – вниз:

– Ток сток – исток силового транзистора М1;

– Напряжение сток – исток силового транзистора М1;

– Среднее значение выделяющейся мощности.


Рис. 14

Рис.15


По полученным параметрам подбираем транзистор 2N6491 TO-220AB. Размеры с учётом ножек: 10х4,5х17 мм. Цена: 100 руб.

2.2.3 Выбор диода D1

Для выбора диода достаточного проверить, чтобы он выдерживал ток, проходящий через него и чтобы время переориентации неосновных носителей было значительно меньше, чем период коммутаций обмотки возбуждения. Ввиду высокой максимальной частоты коммутаций выбираем диод HFA08TA60C, 2UFAST диода 2x4А 600В TO220AB. Размеры с учётом ножек: 10х4,5х17 мм. Цена: 140 руб.


ЗАКЛЮЧЕНИЕ

В настоящей работе было произведено моделирование схемы управления током возбуждения автомобильной генераторной установки с когтеобразным ротором. В процессе моделирования были получены данные для выбора элементной базы, наглядные осциллограммы переходных процессов в разных режимах работы установки. Кроме того, была произведена настройка модели таким образом, чтобы она удовлетворяла поставленным требованиям по рабочим частотам и качеству тока возбуждения генератора.

Страницы: 1, 2, 3

рефераты
Новости