рефераты рефераты
Главная страница > Курсовая работа: Развитие солнечной энергетики  
Курсовая работа: Развитие солнечной энергетики
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Развитие солнечной энергетики

2. создание крупных солнечных энергетических установок мощностью в несколько десятков мегаватт, рассчитанных на работу в энергосистеме.

КОЛЛЕКТОРЫ СОЛНЕЧНОЙ ЭНЕРГИИ

Основным конструктивным элементом солнечной установки является коллектор, в котором происходит улавливание солнечной энергии и ее преобразование в теплоту, и нагрев воздуха, воды или другого теплоносителя.

Различают два типа солнечных коллекторов:

1. плоский,

2. фокусирующий.

В плоских коллекторах солнечная энергия поглощается без концентрации, а в фокусирующих - с концентрацией, т.е. с увеличением плотности поступающего потока радиации.

Концентраторы солнечной энергии.

Концентраторы - это оптические устройства в виде зеркал или линз, в которых достигается повышение плотности потока солнечной энергии.

Зеркала плоские, параболоидные или параболоцилиндрические изготавливаются из тонкого металлического листа или фольги или др. Материалов с высокой отражательной способностью.

Сравнительная характеристика коллекторов различных типов

Солнечные станции строятся в основном двух типов:

1 - СЭС башенного типа,

2 - СЭС модульного типа.

Система, состоящая из множества небольших концентрирующих коллекторов, каждый из которых независимо следит за солнцем - модульная СЭС.

Концентраторы не обязательно должны иметь форму параболоида, не обычно это предпочтительно. Каждый концентратор передает солнечную энергию жидкости теплоносителя. Горячая жидкость ото всех коллекторов собирается в центральной энергостанции. Тепло несущая жидкость может быть водяным паром, если она будет прямо использоваться в паровой турбине или какой-нибудь термохимической средой - например, диссоциированный аммиак. Основные недостатки систем с сосредоточенными коллекторами:

1 - для каждого отражателя требуется сложный по конструкции термический приемник, который размещается в его фокальной области.

2 - для съема энергии 20000 параболоидных отражателей привод генератора мощностью 100 МВт необходим дорогой высокотемпературный обменный контур, соединяющий рассредоточенные концентраторы.

Указанные выше трудности разрешаются, если вместо этих 10-20 тысяч приемников сделать один аналогичный по своим размерам и параметрам паровому котлу обычного типа, и поднять его над поверхностью Земли.

Таким образом, возникает концепция гелиостанции башенного типа. В этом случае все параболоиды заменяются практически плоскими отражателями, производство которых значительно дешевле.

СОЛНЕЧНЫЕ ПРУДЫ

Солнечный пруд представляет собой оригинальный нагреватель, в котором теплозащитной крышкой является вода.

Достаточно большой водоем может быть просто вырыт (могут быть использованы и природные водоемы, например, в Израиле использовано Мертвое море в качестве солнечного пруда), что относительно недорого.

Солнечный пруды содержат в себе и накопители тепла, поэтому область их использования может быть довольно широкой. Солнечные пруды могут быть использованы в гелиосистемах отопления и горячего водоснабжения жилых и общественных зданий, для получения технологической теплоты, в системах кондиционирования воздуха абсорбционного типа, для производства электроэнергии, т.е., солнечный пруд служит одновременно коллектором и аккумулятором теплоты.

В солнечный пруд заливается несколько слоев воды с различной степенью солености, причем наиболее соленый слой ( 0,5 м) располагается на дне. Солнечное излучение поглощается окрашенными в темный цвет дном водоема и придонный слой воды нагревается.

Придонный слой воды берется настолько более соленым, чем слой над ним, что плотность его хотя и уменьшается при нагревании, но все-таки остается выше плотности более высокого слоя. Поэтому конвекция (подъем вверх более теплой - более легкой- воды) подавляется и придонный слой нагревается все сильнее до 90° С, иногда - до кипения, при этом температура поверхностного слоя остается на уровне температуры окружающей среды. Пруд глубиной до 2-х м способен обеспечить непрерывную работу СЭС при прекращении инсоляции на срок до недели, пруды большей глубины могут обеспечить сезонный цикл аккумуляции. Правда, для этих СЭС требуются большие площади земельных угодий, в остальном - экологически приемлемые сооружения, тем более, что соленые пруды в естественных условиях существуют веками.


Глава 2. НАЗЕМНЫЕ СОЛНЕЧНЫЕ УСТАНОВКИ

За последние 20 лет широкое распространение получили «солнечные дома», хозяйства от коттеджа до поместья, все энергетические потребности которых обеспечиваются собственной солнечной установкой. Не подводятся провода извне, нет счетчиков электроэнергии и теплой воды, не нужны запасы дров, угля, мазута. Никаких отключений и перебоев из-за прихотей Минтопэнерго – сам себе Чубайс, сам себе Черномырдин. Только все это пока, к сожалению, не у нас, а в США, Японии, Западной Европе, хотя климатические условия позволяют иметь это удобство во многих наших регионах. В чем дело, не очень понятно: то ли стоит дорого, то ли мода не дошла.

Используются разные способы преобразования солнечной энергии: фототермический, фотоэлектрический и фотохимический. В первом, простейшем, рабочее тело (теплоноситель) нагревается в коллекторе (системе светопоглощающих труб) до высокой температуры и служит для отопления помещений. Коллектор располагается на крыше здания так, чтобы его освещенность в течение дня была наибольшей. Система отражающих жалюзи, управляемая компьютером, обеспечивает нужную освещенность коллектора для заданного интервала температур в помещениях. Часть тепловой энергии аккумулируется: краткосрочно (несколько дней) – с помощью тепловых или механических аккумуляторов, долгосрочно (на зимний период) – химических. За день 1 м2 солнечного коллектора простой конструкции может дать 50–70 л горячей воды (80–90 °С). Типовые гелиоустановки давно используются в южных районах для снабжения горячей водой отопительных и других хозяйственных систем.

В «солнечном доме», обеспечивающем себя не только теплом, но и электроэнергией, используется другой тип гелиоустановки. В этом случае лучшим рабочим телом являются жидкости типа фреона с малой теплотой испарения, но из-за опасного загрязнения в случае утечки (влияние на озоновый слой атмосферы) их промышленное производство сейчас запрещено. Они работают при температуре около 100 °С, что не требует специальных концентраторов солнечного потока. Если теплоноситель – вода, температура нагрева должна быть 200–500 °С при обязательном использовании концентраторов – зеркал, отражающих свет с большой площади на коллектор.

Все чаще применяются в солнечных установках фотоэлектрические преобразователи на основе кристаллов кремния и арсенида галлия. Последние обладают лучшей тепловой устойчивостью и более высоким КПД (реально до 20%). Применение гетероструктурных полупроводников, за открытие и внедрение которых академик Ж.И.Алферов получил недавно Нобелевскую премию, увеличивает эффективность преобразователей вдвое. Панели солнечных преобразователей, располагаемых, как правило, в верхней части здания, заменяют тепловой коллектор, и вырабатывают ток, идущий на освещение, обогрев и механические работы.

«Солнечный дом» – это современный уровень культуры жилья. Его эффективность и распространение в значительной степени зависят от такой простой истины, как экономное отношение к получаемой энергии. Он должен иметь надежную теплоизоляцию, современную вентиляционную технику, кондиционеры, т.е. не должен выбрасывать тепло «на ветер». Как показывает опыт, только за счет экономии тепла расходы электроэнергии сокращаются в несколько раз.

Границы малой солнечной энергетики постоянно расширяются, и теперь она способна обеспечивать энергией не только отдельные дома, но и целые заводы. В качестве примера можно назвать металлургический завод под Ташкентом, экспериментальные СЭС-5 в Крыму и «Solar-1» в Калифорнии. Это гелиостанции башенного типа с котлом, поднятым высоко над землей, и большим числом параболических или плоских зеркал (гелиостатов), расположенных у подножия. Зеркала должны быть подвижными, отслеживать дневное перемещение Солнца с помощью механической системы, управляемой компьютером, что усложняет установку и очень сказывается на стоимости производимой энергии. Вырабатываемый котлом пар приводит в действие электрогенератор, как на тепловых станциях.

Такие солнечные электростанции мощностью 0,1–10 МВт были построены во многих странах с «хорошим» солнцем (США, Франция, Италия, Япония) и сейчас успешно работают. Появились проекты более мощных СЭС (до 100 МВт). Главное препятствие их широкому распространению – высокая себестоимость электроэнергии, в 6–8 раз выше, чем на ТЭС. Хотя имеется тенденция к снижению (за счет более простых гелиостатов, более эффективных полупроводников, легких ленточных панелей), пока наземные СЭС не могут экономически конкурировать с ТЭС. Другое дело – соображения экологического порядка. Молодые солнечные станции намного «чище» тепловых и свою нишу в энергетике они, несомненно, найдут. Прогресс науки и улучшение международного климата, когда СЭС, расположенная в пустынной местности, будет снабжать энергией сразу несколько стран, будут способствовать их внедрению. И все же наземные СЭС вряд ли способны полностью решить проблему «большой энергетики» для современной индустрии, как это делают в настоящее время крупные ТЭС и АЭС мощностью порядка 10 ГВт. Столь мощные СЭС были бы чрезвычайно громоздки, для их постройки нужно отчуждать огромные территории в пустынных местах и передавать электроэнергию на большие расстояния. При этом пропадает экологическая «чистота» и не устраняется тепловой нагрев Земли (что считалось изначально главными достоинствами солнечной энергетики). Чтобы предназначенное было полностью выполнено, надо выносить СЭС в космическое пространство.

Страницы: 1, 2, 3, 4, 5, 6

рефераты
Новости