рефераты рефераты
Главная страница > Курсовая работа: Расчет установки утилизации теплоты отходящих газов технологической печи  
Курсовая работа: Расчет установки утилизации теплоты отходящих газов технологической печи
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Расчет установки утилизации теплоты отходящих газов технологической печи

где сCO2, сH2O, сN2, сО2 - средние удельные теплоемкости при постоянном давлении соответствующих газон при температуре t, кДж/(кг · К);

сt - средняя теплоемкость дымовых газов, образующихся при сгорании 1 кг топлива при температуре t, кДж/(кг К);

при 100 °С:  кДж/(кг∙К);


 кДж/кг;

при 200 °С:  кДж/(кг∙К);

 кДж/кг;

при 300 °С:  кДж/(кг∙К);

 кДж/кг;

при 400 °С:  кДж/(кг∙К);

 кДж/кг;

при 500 °С:  кДж/(кг∙К);

 кДж/кг;

при 600 °С:  кДж/(кг∙К);

 кДж/кг;

при 700 °С:  кДж/(кг∙К);

 кДж/кг;

при 800 °С:  кДж/(кг∙К);

 кДж/кг;

при 1000 °С: кДж/(кг∙К);

 кДж/кг;

при 1500 °С: кДж/(кг∙К);

 кДж/кг.


Результаты расчетов сводим в табл. 3.

Энтальпия продуктов сгорания Таблица 3

Температура

Теплоемкость

продуктов сгорания сt,

кДж/(кг∙К)

Энтальпия

продуктов сгорания Ht,

кДж/кг

°С К

100

200

300

400

500

600

700

800

1000

1500

373

473

573

673

773

873

973

1073

1273

1773

24,398

24,626

24,912

25,202

25,503

25,821

26,151

26,465

27,032

29,171

2439,8

4925,3

7473,6

10080,8

12751,7

15492,4

18305,6

21171,8

27032,0

43756,5

По данным табл. 3 строим график зависимости Ht = f(t) (рис. 1) см. Приложение.

2.2 Расчет теплового баланса печи, КПД печи и расхода топлива

Тепловой поток, воспринятый водяным паром в печи (полезная тепловая нагрузка):

где G - количество перегреваемого водяного пара в единицу времени, кг/с;

Hвп1 и Нвп2 - энтальпии водяного пара на входе и выходе из печи соответственно, кДж/кг;

Вт.


Принимаем температуру уходящих дымовых газов равной 320 °С (593 К). Потери тепла излучением в окружающую среду составят 10 %, причем 9 % из них теряется в радиантной камере, а 1 % - в конвекционной. КПД топки ηт = 0,95.

Потерями тепла от химического недожога, а также количеством теплоты поступающего топлива и воздуха пренебрегаем.

Определим КПД печи:

где Нух - энтальпия продуктов сгорания при температуре дымовых газов, покидающих печь, tух; температура уходящих дымовых газов принимается обычно на 100 - 150 °С выше начальной температуры сырья на входе в печь; qпот - потери тепла излучением в окружающую среду, % или доли от Qпол;

Расход топлива, кг/с:

 кг/с.

2.3 Расчет радиантной камеры и камеры конвекции

Задаемся температурой дымовых газов на перевале: tп = 750 - 850 °С, принимаем

tп = 800 °С (1073 К). Энтальпия продуктов сгорания при температуре на перевале

Hп = 21171,8 кДж/кг.

Тепловой поток, воспринятый водяным паром в радиантных трубах:

где Нп - энтальпия продуктов сгорания при температуре дымовых газов па перевале, кДж/кг;

ηт - коэффициент полезного действия топки; рекомендуется принимать его равным 0,95 - 0,98;

 Вт.

Тепловой поток, воспринятый водяным паром в конвекционных трубах:

 Вт.

Энтальпия водяного пара на входе в радиантную секцию составит:

 кДж/кг.


Принимаем величину потерь давления в конвекционной камере Pк = 0,1 МПа, тогда:

Pк = P - Pк,

Pк = 1,2 – 0,1 = 1,1 МПа.

Температура входа водяного пара в радиантную секцию tк = 294 °С, тогда средняя температура наружной поверхности радиантных труб составит:

где Δt - разность между температурой наружной поверхности радиантных труб и температурой водяного пара (сырья), нагреваемого в трубах; Δt = 20 - 60 °С;

К.

Максимальная расчетная температура горения:

где to - приведенная температура исходной смеси топлива и воздуха; принимается равной температуре воздуха, подаваемого на горение;

сп.с. - удельная теплоемкость продуктов сгорания при температуре tп;


°С.

При tmax = 1772,8 °С и tп = 800 °С теплонапряженность абсолютно черной поверхности qs для различных температур наружной поверхности радиантных труб имеет следующие значения:

Θ, °С 200 400 600

qs, Вт/м2 1,50 ∙ 105 1,30 ∙ 105 0,70 ∙ 105

Строим вспомогательный график (рис. 2) см. Приложение, по которому находим теплонапряженность при Θ = 527 °С: qs = 0,95 ∙ 105 Вт/м2.

Рассчитываем полный тепловой поток, внесенный в топку:

 Вт.

Предварительное значение площади эквивалентной абсолютно черной поверхности:

 м2.

Принимаем степень экранирования кладки Ψ = 0,45 и для α = 1,25 находим, что

Hs/Hл = 0,73.


Величина эквивалентной плоской поверхности:

Страницы: 1, 2, 3, 4, 5, 6

рефераты
Новости