рефераты рефераты
Главная страница > Курсовая работа: Расчет трансформатора ТМ1000/35  
Курсовая работа: Расчет трансформатора ТМ1000/35
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Расчет трансформатора ТМ1000/35

7.2 По рассчитанным размерам бака необходимо определить поверхность охлаждения бака Пбак - площадь крышки и боковой поверхности.

 

8. ТЕПЛОВОЙ РАСЧЕТ

Тепловое состояние электрической машины является важным фактором ее работоспособности. Это связано, прежде всего, с тем, что работа любой электрической машины связана с наличием изоляции между токоведущими частями. В качестве изоляции электрических машин чаще всего используются материалы органического происхождения (в трансформаторе это бумага и масло), в которые быстро разрушаются при относительно небольших температурах - около 200о С. Помимо этого в таких материалах происходят естественные процессы старения, резко ускоряющиеся при повышении температуры. Так в диапазоне температур 80-120о С увеличение температуры на каждые 6о приводит у снижению срока службы изоляции в два раза. Так при сроке службы изоляции трансформатора около 20 лет длительное увеличение температуры на 30о выше допустимой приведет к сокращению срока службы до полугода, а на 40о - до двух месяцев. Таким образом машина, правильно спроектированная в электромагнитном отношении, может оказаться совершенно неработоспособной в тепловом. Указанные обстоятельства обусловливают чрезвычайную значимость тепловых расчетов электрических машин. Однако, ввиду того, что, учебный план специальности составлен так, курсы по теории нагрева читаются позже выполнения проекта, то тепловой расчет трансформатора резко упрощен и представляет собой лишь приблизительную оценку теплового состояния трансформатора.

Такая оценка может быть получена на основе закона Ньютона-Рихмана, описывающий процесс конвективного переноса теплоты

, Вт

(8.1)

где P - мощность, выделяемая в объеме нагреваемого тела;

Похл - площадь поверхности тела, через которую происходит охлаждение;

a - коэффициент теплоотдачи с поверхности;

Q - температура нагреваемого тела;

Qос - температура окружающей среды.

При этом предполагается, что весь внутренний объем трансформатора представляет собой однородное тело с идеальной теплопроводностью.

Для проведения тепловых расчетов удобно ввести величину перегрева - превышения температуры охлаждаемой поверхности на температурой охлаждающей среды

 

, оС

(8.2)

В нашем случае мощность Р в уравнении (8.1) - это мощность потерь холостого хода и короткого замыкания, которые были определены на этапе электромагнитного расчета, и таким образом, на этапе теплового расчета являются заданной величиной. Величина перегрева определяется классом применяемой изоляции и потому также известна. Поэтому тепловой расчет сводится к определению поверхности охлаждения, обеспечивающей допустимые значения перегрева при заданной мощности потерь

,

(8.3)

Для масляного трансформатора поверхностью охлаждения является поверхность бака. С увеличением габарита трансформатора мощность потерь растет быстрее, чем объем а следовательно и поверхность бака. Для уменьшения габаритов в этом случае применяют баки с волнистой поверхностью, радиаторы, обладающие развитой поверхностью охлаждения. Ориентировочно, тип бака можно определить по табл. 8.1.

Таблица 8.1.

Области применения баков различной конструкции

тип бака

вид

охлаждения

мощность

кВА

Бак с гладкими стенками М 25-40
Бак со стенками в виде волн М 40-630
Бак с навесными радиаторами с прямыми трубами М 100 -6300
Бак с навесными радиаторами с гнутыми трубами М 2500-10000

8.1. Коэффициент теплоотдачи с плоской поверхности;

, Вт/(м2 . оС)

(8.4)

где kф - коэффициент формы поверхности (для гладкой стенки kф=1)

8.2. Предварительное значение общей поверхности охлаждения

, мм2

(8.5)

Величину перегрева в (8.5) принять равной DQ=65оС.

8.3. Поверхность охлаждения радиаторов

, мм2

(8.6)

где kф = 1.3 - коэффициент формы поверхности для радиаторов.

8.4.Используя табл. 8.2, выбрать необходимое количество и тип радиатора.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

рефераты
Новости