рефераты рефераты
Главная страница > Курсовая работа: Электроснабжение цеха предприятия  
Курсовая работа: Электроснабжение цеха предприятия
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Электроснабжение цеха предприятия

=88 - термический коэффициент алюминия.

Момент сопротивления определяется по формуле

,   (4.3)

где  - толщина полосы;

= 4см - ширина шины.

Расчётное напряжение в металле шин определяется по формуле


,  (4.4)  

где = 5,1кА - ударный ток короткого замыкания;

а = 25см - расстояние между осями шин смежных фаз;

=90см – расстояние между изоляторами.

Таким образом, принимается к установке алюминиевая шина марки ШМА – 6 размером 405мм установленная на изоляторах плашмя, так как она термически и динамически устойчива.

4.3 Выбор и проверка предохранителей

Предохранители выбираются по конструктивному исполнению, роду установки, номинальному току и напряжению, а проверяются на отключающую способность, то есть на выполнение условия

По таблице 5.2  выбирается плавкий предохранитель ПНБ-5 с параметрами  .

Определяется ток короткого замыкания по формуле

      (4.5)

Выбранный предохранитель проверяется на отключающую способность

,

Таким образом, плавкий предохранитель подходит по условию . Принимается к установке плавкий предохранитель марки ПНБ-5.


4.4 Выбор и проверка выключателей

Выключатели выбираются по номинальному току и напряжению и проверяются на отключающую способность в нормальном рабочем режиме.

По таблице 27.1  выбирается малообъёмный масляный выключатель подвесного исполнения, марки ВМП - 10. Номинальное напряжение , номинальный ток  тип привода ПП с параметрами , .

Определяется номинальный ток отключения по формуле

    (4.6)

Выбранный выключатель проверяется на отключающую способность.

 

Таким образом, к установке принимается выключатель марки ВМП – 10.

Рисунок 4.1 Масляный выключатель типа ВМП – 10: 1 - полюс; 2 - опорный изолятор; 3 - рама; 4 - тяга из изоляционного материала; 5 – вал; 6 – масляный буфер


5. РАСЧЁТ И ВЫБОР ТИПА КОМПЕНСИРУЮЩЕГО УСТРОЙСТВА

5.1 Расчёт компенсирующего устройства

В  цехах  промышленных  предприятий  в  качестве  компенсирующего устройства обычно применяется батарея статистических конденсаторов. Расчёт компенсирующего устройства производится следующим образом.Необходимая трансформаторная мощность до установки конденсаторов определяется по формуле  

,       (5.1)

где =824,33 кВт – активная расчётная мощность приёмников электроэнергии цеха.

По таблице 5.  Необходимая предприятию реактивная мощность определяется по формуле

кВар         (5.3)      

Необходимая мощность конденсаторной батареи определяется по формуле  

       (5.4)

где=361,1 кВар – расчетное значение реактивной мощности конденсаторной батареи.


5.2 Выбор типа комплектной конденсаторной установки

По таблице 5.2 (методические указания к выполнению курсового проекта) выбираются комплектные конденсаторные установки по ближайшей номинальной мощности кВар. Выбирается конденсаторная установка марки УК – 0,38 - 450.

Некомпенсированная реактивная мощность определяется по формуле

,                              (5.5)

Необходимая трансформаторная мощность определяется по формуле

                              (5.6)

Трансформаторы для подстанции выбираются исходя из расчёта компенсирующего устройства и расчётной максимальной потребляемой мощности по таблице 5.1 [методические указания к выполнению курсового проекта]. В соответствие с данными условиями выбираются два трансформатора марки ТМ – 1000/10 с номинальной мощностью 1000 кВА.

Трансформатор – это электромагнитное устройство состоящее из двух электрически не связанных между собой обмоток и магнитопровода по которому замыкается магнитный поток. Работа трансформатора основано на законе электромагнитной индукции. Трансформатор преобразует только энергию переменного тока.

Если трансформатор включить в сеть постоянного тока работать он не будет, т.к при неизменном магнитном потоке ЭДС в обмотках наводится не будут, ток первичной обмотки станет слишком велик что может привести повреждению трансформатора.

Трансформаторы классифицируются по следующим признакам:

1.  По назначению – силовые (преобразует только значение напряжения и тока), трансформаторы для преобразования числа фаз, для преобразования частоты тока, сварочные, пик трансформаторы, автотрансформаторы.

2.  По виду охлаждения – (воздушные и масляные)

3.  По числу фаз – однофазные, трехфазные и многофазные

4.  По числу обмоток – двухобмоточные, трехобмоточные и многообмоточные .

5.  По конструкции – броневые, стержневые и бронестержневые.

Трансформаторы могут выполнятся с воздушным или массовым охлаждением. Воздушное охлаждение может быть естественным или искусственным с помощью вентиляторов.

Сердечник трансформатора образует замкнутый для магнитного потока контур и изготавливается из электротехнической стали толщиной 0,5 и 0,35 мм, марки Э4 – 2. Отдельные листы стали для изоляции их друг от друга покрывают слоем лака после чего стягивают болтами, пропущенными в изолирующих втулках.

Обмотка трансформатора выполняется из круглой или прямоугольной изолированной меди. На стержень магнитопровода предварительно надевают изолирующий цилиндр, на котором помещают обмотку низшего напряжения. На наложенную обмотку низшего напряжения надевают другой изолирующий цилиндр, на который помещают обмотку высшего напряжения. Концы обмоток высшего и низшего напряжения выводятся через проходные изоляторы.

Сердечник с обмоткой обычно опускают в бак прямоугольной или овальной формы изготовленным из стали. В бак заливается специальное трансформаторное масло, обладающее большой теплопроводностью.

Чтобы дать возможность маслу расширятся на крышке трансформатора устанавливают дополнительный бочок называемый расширителем. Этот бочок соединяют трубкой с баком, для расширителя устанавливают масломерную стеклянную трубку для наблюдением за уровнем масла.     


6. МЕРОПРИЯТИЯ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ

6.1 Правила техники безопасности при эксплуатации электроустановок

При эксплуатации электроустановок существует опасность для жизни людей, из-за чего необходимо соблюдать правила техники безопасности. Одним из основных положений, обеспечивающих безопасность работы во вновь монтируемых и действующих электроустановках, является состояние здоровья монтажного и эксплуатационного персонала. В связи с этим согласно правилам безопасности все лица, допускаемые к работам, проходят специальный медицинский осмотр.

О состоянии здоровья проверяемого поликлиникой даётся специальное заключение, в котором должна быть также указана возможность работать на высоте и в действующих электроустановках. Медицинские осмотры персонала, допущенного к работе в электроустановках, проводятся систематически не реже одного раза в два года. Перед тем как быть допущенным к работе в электроустановке, вновь принимаемый электромонтёр должен пройти вводный инструктаж. Задача вводного инструктажа заключается в том, чтобы ознакомить поступающего работника с общими правилами безопасности при производстве электромонтажных работ или при обслуживании действующей электроустановки. В ходе вводного инструктажа особое внимание инструктируемого обращается на необходимость неукоснительного выполнения правил во избежание несчастных случаев при работе.

Страницы: 1, 2, 3, 4, 5

рефераты
Новости