рефераты рефераты
Главная страница > Курсовая работа: Цифровой дозиметр  
Курсовая работа: Цифровой дозиметр
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Цифровой дозиметр

Существуют различные виды газоразрядных счетчиков. Особенность конструкции торцового счетчика - окно в торце счетчика, закрытое пластинкой из слюды толщиной 0,01 мм, через которое могут проходить мягкие b - и a-частицы. Анод счетчика - вольфрамовая нить. Один конец нити закреплен! в стеклянном корпусе счетчика, а на другом, свободном конце нити, напаян стеклянный шарик, предназначенный для предотвращения искажения электрического поля.

Для измерения числа у-квантов применяют стеклянные счетчики. Они выполнены в виде стеклянной трубки, внутренняя поверхность которой покрыта тонким проводящим слоем (медыо, графитом и др.), являющимся катодом, анодом же служит вольфрамовая пять, натянутая по оси трубки. На концах трубки устроены выводы электродов: один вывод (со знаком плюс) соединен с нитью, другой (со знаком минус) - с катодом. Для регистрации более жестких излучений применяют цилиндрические счетчики, катод которых выполнен из алюминиевой фольги, а анод - из вольфрамовой нити, кренящейся на стеклянных изоляторах.

Эффективность пропорциональных счетчиков выше, чем у ионизационных камер (в связи с наличием газового усиления), и в разных случаях составляет от долей до 100%. Эффективность счетчиков Гейгера-Мюллера от 2% (для a-частиц) до 100% для быстрых заряженных частиц. Время запаздывания для пропорциональных счетчиков от 0,1 до 2 мкс, а для счетчиков Гейгера - Мюллера - от 0,1 до 0,6 мкс.

Амплитуда выходного импульса, В, на пропорциональном счетчике примерно. в 100 раз больше амплитуды выходного сигнала ионизационной камеры.

Формы выходных сигналов цилиндрического пропорционального д самогасящегося счетчиков приведены на рис.2. Диапазон измеряемых энергий от сотен эВ до десятков МэВ.

Рис. 7. Формы выходных сигналов цилиндрического пропорционального (д) и самогасящегося (б) счетчиков

Если использовать газоразрядный счетчик в режиме коронного (искрового) разряда, то получим коронный (искровой) счетчик ионизирующих части.

4. Разработка и обоснование структурной схемы прибора

В состав дозиметра входят следующие основные устройства:

Блок питания - преобразует напряжение сети в напряжение необходимое для питания блоков дозиметра.

Газоразрядный датчик - предназначенная для измерения скорости пролетания заряженных частиц.

Цифровое измерительно - управляющее устройство выполняет функции измерения выходного сигнала газоразрядного датчика и преобразование его в форму, удобную для дальнейшей обработки или управления исполнительными механизмами.

К периферийному оборудованию дозиметра относятся дистанционные индикаторные табло, регистрирующие устройства, дисплеи и т.д. .

Периферийное оборудование соединяется с ЦИУУ посредством кабельных линий связи.

Работой аппарата должна управлять микропроцессорная система - представляющая собой функционально завершенное устройство обработки и отображения данных. В состав системы входят схемы сопряжения входов и выходов микропроцессора с цепями аппарата. Она осуществляет обработку сигналов с панели управления и с контрольных датчиков аппарата, управление аппаратом по заданной программе, цифровую и световую индикацию работы.

Память - предназначена для хранения программ и данных.

Структурная схема прибора для измерения давления показана на рис.1.


Рис.1

5. Расчет параметров узлов преобразующих сигнал

С датчика прибора будет подаваться напряжение 100

20*lg (100%/1%) =40 Дб

Определяем разрядность АЦП для счётчика:

NАЦП>] log2 (100%/1%) =8

Выбранное нами из справочника АЦП является микросхема К1107ПВ2. Ее изображение представлено на рисунке 3:

UREF1

UREF2

ADC

D0

D1

D2

D3

D4

D5

D6

D7

OCC1

OCC2

C

VIN

Рис.3

5. Выбор системы обработки информации и ее вывода

Исходя из требуемой точности и максимальным значением измеряемой дозы, можно вынести заключения о том, что количества разрядов индикации будет равно 4. Пользователь будет управлять работой аппарата для измерения дозы четырьмя кнопками:

1) Кнопка сброс;

2) Кнопка измерения;

3) Кнопка диапазон;

4) Кнопка контроль;

При нажатии кнопки сброс, происходит сброс информации находящейся в памяти, очищаются все рабочие переменные и прибор переходит в первоначальное рабочее состояние.

При нажатии кнопки измерения происходит измерение и запоминание дозы излучения.

При нажатии кнопки диапазон высвечивание существующих диапазонов на табло.

При нажатии кнопки контроль происходит самоконтроль всех узлов прибора.

Теперь необходимо выбрать разрядность МП. Так как прибор являются не особо критичным к быстродействию управляющего устройства, и алгоритм обработки и отображения не требует наличие больших вычислительных ресурсов, а также учитывая разрядность АЦП, выбираем 8 - ми разрядное устройство.

В настоящее время существует огромный выбор 8 - ми разрядных МП и МК (ОМЭВМ). Как правило, МК представляет собой законченную микросистему с гибкой архитектурой и возможностью легкого наращивания дополнительных средств. Использования однокристального МК позволяет в значительной степени сократить затраты на построение системы различного назначения и уровня сложности так как различные части микросистемы уже интегрированы. Это центральный процессор, память, подсистема ввода - вывода, средства счета времени, логика прерывания. Таким образом остановим выбор на ОМЭВМ 1816ВЕ51.

Характеристики МК 1816ВЕ51:

Память программ - 4К.

Память данных - 128 байт.

Число линий ввода - вывода - 32.

Два 16-ти разрядных таймера.

Рассмотрим структурную схему МК 1816ВЕ51:

В основу архитектуры МК 1816ВЕ51 положена организация гарвардского типа, ориентированная на интенсивное использование двух банков рабочих регистров и операций ввода - вывода. В состав однокристального МК 1816ВЕ51 входит 8 - ми разрядный ЦП, управляющее ПЗУ, внутреннее ОЗУ данных, 32 линии прямого ВВ, два или три 16 - ти разрядных таймера/счетчика и логика двухуровневой системы прерываний с пятью или шестью источниками запросов. Эти средства образуют резидентную часть МК, размещенную непосредственно на кристалле.

Гарвардский принцип организации вычислительной среды предусматривает разделения памяти для хранения программ и данных. Управляющая память допускает только операцию считывания, память данных доступна и для записи, и для считывания.

Память данных разбита на две полностью изолированные друг от друга 8 - ми разрядные линейные области с различными способами доступа к ним. Внутренняя память является областью интенсивного обращения и служит только для хранения данных, внешняя - дополнительным расширением пространства данных, и может быть с успехом использована для ВВ с отображением в память. Существует также возможность физического совмещения внешней памяти для организации единой области программ и данных, доступной как для операции чтения, так и записи. Так, при обращениях к внешней памяти порт Р0 выполняет роль совмещенной шины адреса/данных, а Р2 - шины старшей части адреса. Все выводы порта Р3 выполняют роль линий управления и специального ВВ.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9

рефераты
Новости